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Abstract— Simox is a C++ robotics toolbox offering a compre-
hensive framework for robot simulation and visualization, mo-
tion and grasp planning. The expandable open-source project
(http://simox.sf.net) hosts a wide range of algorithms that are
needed for setting up a virtual representation of a robot
and its environment. The framework explicitly supports robot
systems with a high number of degrees of freedom (DoF), such
as mobile manipulators or humanoid robots. Further, Simox
comprises state-of-the-art algorithms for motion and grasp
planning that allow to efficiently plan collision-free motions
and to automatically compute grasp sets for arbitrary objects
and end effectors. The library is successfully employed on the
robots iCub [1] and ARMAR-III [2].

I. INTRODUCTION

Software development plays a major role, besides hard-
ware setup and mechanical design, when it comes to building
complex robots such as mobile manipulators or humanoids.
Different requirements have to be addressed depending on
the application. A low-level controller for example must
be implemented for real-time use, whereas a task planning
component will interact with the robot on a higher abstraction
level. Hence, developing robotics software is subject to
several constraints such as performance and robustness.

The selection of libraries or frameworks for software
development is influenced by the application and the existing
software environment. Therefore, several aspects have to be
considered when building and/or choosing software compo-
nents for developing robotics applications:

• Performance and Robustness: Although increasing CPU
speed allows to run complex algorithms in reasonable
amounts of time, performance is always an issue in the
context of mobile manipulation and planning. Therefore
often C++ is the preferred choice in robotics since
it combines high level programming language features
with efficient compilation techniques. Robustness can
be achieved by relying on advanced coding techniques
like smart pointers, exception handling and automated
test cases.

• Extensibility: A library should offer easy extension
capabilities. One possible way to achieve this is offering
a plugin mechanism which uses common interfaces to
provide uniform extension points to developers.

• Platform-independence and Dependencies: Since soft-
ware development takes place on different platforms, a
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Fig. 1. Robot models realized with Simox: Kuka KR60-3, iCub and
ARMAR-III.

framework should at least offer support for the main
operating systems WindowsTM, Unix/Linux, and Mac
OS XTM. In addition to that, a low number of necessary
compile-time dependencies ease the setup and compila-
tion process of a library.

Furthermore, the license model might play an important
role in selecting software libraries. In the scientific context,
open-source software is preferred since it allows both reusing
results from others as well as sharing own solutions with the
community. The widely used GNU General Public License
(GPL) is one possible open-source license, but it enforces
projects that use GPL libraries to be published as GPL
as well. Therefore, many libraries apply the GNU Lesser
General Public License (LGPL), since it does not require
derived products to be released under LGPL terms, thus
allowing the usage of the library in commercial products
[3].

Several open source frameworks exist in the context of
robot simulation, differing in complexity, licensing, and
objectives. Physics simulation libraries such as ODE [4],
IBDS [5] or Bullet [6] usually offer possibilities to define
constrained objects which can be used to setup joints of
a robot. Based on these joints the kinematic structure of a
robot can be defined. Motion planning libraries (e.g. OMPL
[7], MSL [8], MPK [9]) and grasp planning frameworks
such as GraspIt [10] or OpenGRASP [11] either rely on
external frameworks for defining robot kinematics or a cus-
tom kinematic representation is used. With OpenRAVE [12]
a comprehensive framework for motion and manipulation
planning is available under an open-source license. Although
a lot of features are offered with OpenRAVE, a large number
of external libraries have to be installed in order to take
advantage of the full functionality. E.g. grasp planning can
only be performed when Python and Octave/MATLABTM is



present on the system. The Robotics Toolbox offers a set
of useful MATLABTM scripts covering a wide range of
algorithms related to robotics [13].

In contrast to existing frameworks for robot simulation,
Simox tries to achieve both: Covering a wide range of
simulation features while not relying on a large number of
dependencies to other libraries. Having lots of dependencies
may cause difficulties in installing and using the framework
when the execution environment is limited, e.g. when the
framework should be running on a robot.

II. SIMOX

With Simox we tried to cover many of the above mentioned
requirements. The library is completely implemented in C++
while using modern programming paradigms to achieve
both efficiency and robustness. Reliability being a critical
aspect, especially in robotic applications, the library comes
with numerous unit test cases and relies on smart pointer
usage to avoid memory leaks. Simox is released under the
LGPL license and can therefore be used both in open-source
and commercial products. The low number of dependencies
required to compile and use the library ensures a convenient
setup and a straightforward integration into any type of
project.

A. Software Structure

Simox itself is divided into the three main libraries Virtu-
alRobot, Saba, and GraspStudio.

VirtualRobot provides functionality for describing robot
models including kinematic chains, end effectors and visu-
alizations. These models can be read from XML files and
afterwards be used for collision detection, inverse and direct
kinematics calculation as well as reachability analysis.

Saba provides sampling-based motion planning algo-
rithms. The library holds several configuration space repre-
sentations that are used by the planning algorithms. Addition-
ally, path processing approaches and visualization routines
are included.

GraspStudio is a library offering grasp planning capa-
bilities. Methods for generating grasping hypotheses, eval-
uating grasp qualities, and planning grasps are available.
Visualization methods for all generated results are included
additionally.

B. 3D Visualization

Providing meaningful and easy to use visualization meth-
ods is crucial for a good framework dealing with geometric
data. In Simox we provide abstract visualization interfaces
which are independent of the underlying 3D libraries. To
support a new 3D library it is only necessary to provide the
matching models and to implement the visualization inter-
faces using the API of the specific library. Up to now, support
for the two visualization frameworks OpenSceneGraph [14]
and Coin3D [15] is realized with Simox.

Fig. 2. The visualization model of iCub’s hand (left) and its reduced model
(right) that is used for efficient collision detection.

C. Collision Detection

Fast collision detection is important for efficient motion
and grasp planning, since sampling-based approaches need
to perform numerous calls to the collision detection engine to
validate sampled configurations. Hence, an efficient approach
is needed, preferably not limiting the shape of the models
(e.g. only convex shapes). The PQP library [16] offers
efficient collision detection for arbitrary 3D models and
an extended version, that is able to handle multi-threaded
collision queries, is fully encapsulated by Simox. For col-
lision detection we provide the same functionality as for
visualization. Therefore, it is possible to use other collision
detection engines by implementing the interface classes for
collision detection.

III. VIRTUALROBOT

The VirtualRobot library offers methods to define robots
and environments and numerous simulation tools. Further-
more, advanced algorithms such as collision detection, Jaco-
bian calculations or reachability analysis are covered.

A. Robot Modeling

A robot is defined via its kinematic structure resulting in
a tree-like structure of connected Robot Nodes, whereas pa-
rameters describing the dynamics can be optionally specified.
In Fig. 1, three exemplary models are shown.

1) Visualization and Collision Detection: Based on the
kinematic definition, 3D models for visualization and for data
processing, can be attached to the Robot Nodes resulting in
two models: one in high resolution for appealing visualiza-
tions and a reduced one that can be used for efficient collision
detection and distance calculations (see Fig. 2).

2) Kinematic Chains and Robot Node Sets: Usually when
a robot is used, several kinematic chains, as logical sets of
joints, are needed. Therefore, so-called Robot Node Sets can
be defined in VirtualRobot, allowing to specify a collection
of Robot Nodes or a strictly defined kinematic chain.

3) End Effectors: End effectors play an important role in
grasp and manipulation planning in the context of humanoid
robots. Hence, a convenient end effector definition is pro-
vided by VirtualRobot, allowing to easily open and close
hands while considering self-collisions and collisions with
the environment.
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Fig. 3. Results of differential inverse kinematics queries.

B. Jacobian Calculations and Differential IK

The Jacobian of a robot manipulator is required for many
complex calculations in a robotic application and, hence,
has to be calculated very efficiently. The most prominent
example is the numerical solution of the inverse kinematics
(IK) but it also is plays a crucial role in calculating the
dynamics of a robot. In short, this matrix holds the partial
derivatives of an end effector’s Cartesian position in its
columns and can be used to transform joint angle velocities
into Cartesian movement. In Simox, special attention has
been paid to the construction of the Jacobian and its conve-
nient usage. It is well integrated into its differential inverse
kinematics algorithm – a numerical IK solver – but it can
be also used easily in other applications. For any node of a
node set, the Jacobian as well as its pseudo inverse can be
obtained conveniently in its reference frame. In addition, it
is possible to exclude either the position or orientation and
even individual coordinates from the matrix. This can be
useful, for instance, if one is only interested in the vertical
acceleration of the end effector while balancing.

In the differential IK algorithm, several targets for different
nodes can be combined and they are all represented by such
a Jacobian. In this way, it is, for instance, possible to find
a solution for a reaching task where not only the desired
orientation of the end effector is given but also the desired
height of an arm element. These mechanisms enable the
formulation of complex position optimizations yet with very
little programming effort.

In Fig. 3, a use-case for the algorithm is shown. The differ-
ential IK is used to calculate the bimanual robot configuration
covering 17 degrees of freedom (DoF) of ARMAR-III (see
Fig. 3(a)). Two IK requests have been performed, where both
TCPs should reach a given position. Firstly, the left elbow
may move freely and has no assigned target location (see
Fig. 3(b)). For the second IK-query, the desired height for the
robot’s elbow is considered additionally to the TCP positions
(see Fig. 3(c)). For both queries the differential IK approach
is able to serve a solution after few iterations.

An application of Jacobian calculations for stability anal-
ysis can be seen in Fig. 4(a). Here, the center of mass
(CoM) Jacobain is used to move the robot until the surface
projection of its CoM lies within the 2D support polygon to
ensure static stability. Note, that no dynamic simulation is

(a) The support polygon to-
gether with the 2D projection
of iCub’s center of mass.

(b) The 6D reachability of the left
end-effector considering 10 DoF
(torso and left arm).

Fig. 4. Stability and reachability computation.

performed, but the physical parameters (such as mass and
inertia matrix) are used to build the CoM-Jacobian.

C. Reachability Analysis

Having a representation of the reachability of a kinematic
chain, e.g. a robot arm, helps to fulfill several tasks in the
context of grasp planning, inverse kinematics (IK) solving
and mobile manipulation. The reachability is defined as
a 3D or 6D volume being reachable by the end effector.
In 6D, the orientation is explicitly considered while it is
ignored in the 3D case. Several approaches exist to build
a representation of the reachability [17], [12], [18], most of
which use a voxelized approximation of the 6D workspace.
Reachability structures in VirtualRobot can be created for
arbitrary kinematic chains considering joint limits and self
collisions. A visualization of iCub’s reachability for the left
end effector is shown in Fig. 4(b). The kinematic chain used
for building the reachability data covers three torso and seven
arm joints.

D. Linked Coordinates

The transformation of positions and orientations into dif-
ferent coordinate systems on a robot’s body are a common
source of errors in robot programming. These errors often
result either from the lack of knowledge of the correct frame
of reference or outdated coordinate transformations (because
the robot has moved). Further, the programmer has to take
matrix conventions and geometrical rules into account. Simox
provides its own tools to free robot programmers of this
repetitive and error-prone task. Instead of directly handling
mathematical primitives for coordinates, programmers use an
abstract data type called linked coordinates that encapsulates
position and orientation and has a direct connection to a
robot and the associated coordinate frame. When requested,
the linked coordinate performs autonomously the calculation
necessary to change into the new the frame of reference. As
the coordinate is constantly connected to the robot, it always
operates on the most recent state of the robot. Snapshots of
a robot state at a given time can be created by cloning the
current model and assigning a coordinate to it.



Fig. 5. Extended visualization features allow to analyze planned motions
as well as low dimensional configuration spaces.

IV. MOTION PLANNING

Saba, a sampling-based motion planning library, is part
of Simox. In order to provide a comprehensive and extensi-
ble implementation, collision detection setups, configuration
spaces and planners are based on generic interfaces.

A. Setup of Collision Detection

Static and moving environmental objects as well as parts
of the robot are handled uniformly. All objects of these types
which are considered for collision detection are thus grouped
into collision sets. Mutual collision detection is achieved by
defining pairs of collision sets.

B. Representation of Configuration Spaces

The configuration space C (C-space) is defined based
a collision detection setup and on a set of Robot Nodes,
which in most cases form a kinematic chain of the robot.
A configuration c ∈ C can either be valid or invalid,
i.e. resulting in a collision in the workspace. In derived
implementations, additional constraints or quality measures
can be incorporated. When considering paths from c0 ∈ C to
c1 ∈ C, several implementations for collision detection are
offered. In most cases, a sampling-based approach, where
intermediate samples on the path are checked for collisions,
will be sufficient (see Fig. 5 left). Nevertheless, different
implementations, e.g. relying on continuous collision detec-
tion, are explicitly supported, as we showed in [19], where
continuous collision detection was realized by Quinlan’s
Free-Bubble approach [20].

C. Motion Planners

Motion planners in Saba basically rely on the definition of
a C-space, which implicitly defines the incorporated joints
and the collision setup. Several ready-to-use implementa-
tions, related to Rapidly-exploring Random Trees (RRT),
are offered as well as advanced planners, such as the IK-
RRT [21] approach for the planning of reaching and grasping
motions (see Fig. 6). Further, several visualization features
allow analyzing the results in the workspace and in low-
dimensional C-spaces (see Fig. 5).

D. Path Processors

A well-known issue in motion planning with sampling-
based approaches is that the resulting trajectories are not
optimal. In order to create appealing movements, the trajec-
tories have to be smoothed. This has been done by classes

Fig. 6. The bimanual IK-RRT approach is used to plan hand-over motions.

implementing the path processor interface of Saba. For
example, one processor is given named ShortcutProcessor
which searches collision-free shortcuts in C-space, in order
to smooth the result. A resulting path in C-space can be seen
in Fig. 5 on the right. Here the planned path is shown in blue
and the smoothed one in yellow.

V. GRASP PLANNING

Grasp planning can be performed with the GraspStudio
library which is part of Simox. Based on the robot definitions,
any end effector can be decoupled from the model and con-
sidered for grasp planning. The Grasp Center Point (GCP)
of an end effector defines the favorite grasping position and
an approach direction. A generic grasp planner consists of
a module for creating approaching motions and a second
module for evaluating the grasp quality. Both components
are exchangeable by custom implementations of the provided
interfaces. Further, custom grasp planners, which do not rely
on the presented planning loop, are explicitly supported.
When using the generic planning approach, the following
steps are fulfilled until the number of requested grasps or a
timeout is reached:

• A collision-free grasping hypothesis is generated by an
implementation of the Approach Movement Generator
interface.

• The fingers are closed and all contacts are stored.
• The contact information is passed to the Grasp Eval-

uation module in order to compute the grasp quality
and/or force closure information.

• Depending on the quality, the grasp is discarded or
added to the set of valid grasps.

A. Grasping Hypotheses: Approach Movement Generator

GraspStudio provides an already built-in implementation
for generating grasping hypotheses. This Approach Move-
ment Generator randomly creates grasping positions based
on the object’s triangle model:

• The normal information of the object’s surface is used to
sample potential approach directions, which are aligned
with the favorite approach movement of the end effector
as given with the GCP definition. Additionally, the
remaining DoF (rotation around the approach direction)
is randomly sampled.

• The end effector is moved towards the object until the
GCP is reached by the object’s geometry or a collision
is detected.

• In case a collision was detected, the end effector is
moved backwards until it is collision-free again.



Fig. 7. Several planned grasps for the hand models of iCub and
ARMAR-III. Left: The friction cones are visualized for each contact. Right:
A set of grasps for a complex object was generated with a grasp planner.

This approach is suitable for most applications, although
the interface definition for Approach Movement Generators
smoothly allows to realize custom approaches.

B. Grasp Evaluation: Grasp Wrench Space Computation

A common approach in grasp quality measurement is the
grasp wrench space computation, where 6D wrenches are
constructed from the contact information [22], [10]. The
6D wrenches represent the contact force and torque and by
analyzing the convex hull of all contact wrenches a quality
measure is given. Checking whether the origin is inside
the convex hull gives an initial indication if the resulting
grasp will be a force closure or not, i.e. the object will
be fixed in the hand. Further, the minimum distance from
the surface of the convex hull to the wrench space origin
gives a quality evaluation since it describes the ability of
compensating external disturbances. On the left of Fig. 7, a
grasping configuration with corresponding friction cones is
shown. The right picture shows several grasps that have been
planned with GraspStudio.

Note that neither the contact model nor the grasp wrench
space computation can perfectly represent the reality, but
these approaches are meant to approximate the grasping
process and to allow efficient planning or efficient first
guesses to be refined through learning. Due to the expandable
design, GraspStudio offers the possibility to also implement
more sophisticated planning approaches.

VI. CONCLUSION

With Simox, we provide a collection of efficient algo-
rithms to be used in the context of robot simulation, motion
and grasp planning. Due to efficient realization and the
extendable design, this open source toolbox offers both basic
functionality on top of which more complex algorithms can
be realized and state-of-the art implementations for a wide
range of applications. Future work will address the support
for industry standards, such as the COLLADA file format.
Further, network transparency and support for shareable
objects to be handled within a network of loosely coupled
components will be emphasized.
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