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Abstract

We present a strategy for learning Deep-Neural-Network
(DNN)-based Acoustic-to-Articulatory Mapping (AAM) func-
tions where the contribution of an articulatory feature (AF) to
the global reconstruction error is weighted by its relevance. We
first empirically show that when an articulator is more crucial
for the production of a given phone it is less variable, confirm-
ing previous findings. We then compute the relevance of an
articulatory feature as a function of its frame-wise variance de-
pendent on the acoustic evidence which is estimated through a
Mixture Density Network (MDN). Finally we combine acous-
tic and recovered articulatory features in a hybrid DNN-HMM
phone recognizer. Tested on the MOCHA-TIMIT corpus, ar-
ticulatory features reconstructed by a standardly trained DNN
lead to a 8.4% relative phone error reduction (w.r.t. a recognizer
that only uses MFCCs), whereas when the articulatory features
are reconstructed taking into account their relevance the relative
phone error reduction increased to 10.9%.
Index Terms: Acoustic-to-Articulatory Mapping, critical artic-
ulators, Deep Neural Networks, phone recognition

1. Introduction
The trajectories, velocities and accelerations of the vocal tract
articulators used as additional observations in a speech recogni-
tion system can significantly increase recognition accuracy ([1],
[7]).

During recognition, when measured articulatory features
are used as observations, an inverse procedure, called Acoustic-
to-Articulatory Mapping (AAM), is required to recover the ar-
ticulatory features (AFs) as only speech acoustics are avail-
able. One of the most used and best performing machine
learning strategy to learn the AAM is the Multilayer Percep-
tron (MLP) [8]. Although an MLP cannot properly handle the
non-uniqueness of the AAM problem, i.e., the fact that a given
speech sound can be produced using a range of different vo-
cal tract configurations [6], it can successfully capture its main
nonlinearities.

Typically one single MLP is used to recover all the articu-
latory features given the acoustic spectrum. That means that the
error function that has to be minimized during the MLP training
is a function of the overall reconstruction error. Here we weight
the contribution of each articulatory feature to the global recon-
struction error function according to the relevance that each ar-
ticulatory feature has in the production of a given speech sound.
The motivation behind this relevance-weighted reconstruction
is to improve the reconstruction of the articulators that are most
critical for the production of a given phone to the detriment of
the reconstruction of the articulators that are less critical.

In this study the relevance of an AF is computed as a func-
tion of the variance it shows when a given sound is produced.
Indeed empirical evidence shows that the less critical an articu-
lator the more variable its behavior ([10], [12]).

Here we experiment with two methods to evaluate the rele-
vance of an AF in the production of a phone. The first method
measures the variance of the actual AF in each phone state
whereas the second method computes, through Mixture Den-
sity Networks [3], the estimated frame-wise variance given the
acoustic evidence, one for each articulatory feature. The first
method has the only aim to verify if our AF relevance evaluation
is reasonable and effective since it considers directly the actual
AFs. Note that in the second method, contrary to [11] where
MDNs are directly used to carry out the AAM, the MDNs are
used in an intermediary step to collect information that is then
used to train the MLP that will perform AAM.

It is important to stress that the relevance-based weights
applied to the backpropagation error function act only on the
hidden layers, but not on the learning of the parameters of the
output layer. In fact the output layer is a set of regressors (one
for each AF) that are independent given the output of the last
hidden layer (which encodes a shared representation of the in-
put).

Similar to [1] and [13] the MLP we use to perform the
AAM is actually a Deep Neural Network (DNN), in other words
an MLP whose parameters are first pretrained by unsupervised
pretraining of its corresponding Deep Belief Network [4]. Once
the AFs are recovered, they are combined with acoustic features
and used as observations in a hybrid DNN-HMM based phone
recognizer as in [1]. DNN-HMM systems are the state-of-the-
art in phone recognition [9], which makes our acoustic baseline
(i.e., DNN-HMM system that only uses MFCCs) a very strong
baseline.

2. Mixture Density Networks
A Mixture Density Network (MDN) combines a standard Mul-
tilayer Perceptron (MLP) with a mixture model [2]. The MLP
takes the input vector x and maps it into a mixture model control
parameters vector which generates the conditional probability
density function of the target variable t of dimension L. Here
the mixture model is a Gaussian Mixture Model (GMM).

p(t|x) =
K∑

k=1

πkN(t|µk(x), σ2
k(x)) (1)

where πk(x) are the mixing coefficients, µk(x) are the (L-
dimensional) means, σ2

k(x) are the spherical variances and K
is the number of components of the GMM.

The MLP has sigmoidal hidden units and one output unit for
each control parameter. The output layer consists of K softmax



output units, K exponential output units and KxL linear out-
put units which determine the mixing coefficients, the spherical
variances and the components of the means respectively. The
weights and biases of the MLP are adjusted to minimize the
following error function through standard backpropagation.

e = −
I∑

i=1

ln(
K∑

k=1

πk(xi, w)N(ti|µk(xi, w), σ2
k(xi, w))) (2)

Once the GMM parameters are learnt we can compute the con-
ditional expectation of t:

E[t|x] =
K∑

k=1

πk(x)µk(x) (3)

and the overall variance of the conditional distribution p(t|x)
[3]:

s2(x) =

K∑
k=1

πk(x)[σ
2
k(x) + ||µk(x)−

K∑
l=1

πl(x)µl(x)||2] (4)

In this work the estimated variance is used to compute the
frame-wise AF relevance given the acoustic evidence. In addi-
tion the MDN represents an alternative AAM method in which
an MDN is used to recover each AF (as in [11]). In both cases
the MDNs have the same configuration (see section 4).

3. Deep Neural Networks
A Deep Neural Network (DNN) is an MLP whose parameters
are pretrained by unsupervised training of a “corresponding”
Deep Belief Network (DBN). The pretraining can be interpreted
as an attempt to extract the statistical structure of the input do-
main (i.e., P (X)) that can effectively guide the search of input-
output relations (P (Y |X)) in classification or regression prob-
lems.

In DNN training, a DBN is first trained in an unsupervised
fashion. Then the DNN is created by transforming the stochas-
tic nodes of the trained DBN into deterministic nodes and by
adding an output layer on top of the network. The output unit
activation function can be either e.g. a linear regressor or a soft-
max function depending on whether we want the DNN to per-
form regression or classification. Finally the parameters of the
DNN are fine-tuned through supervised learning, typically us-
ing backpropagation.

In this work the DNNs are used (i) to learn the AAM and
(ii) to estimate the phone posteriors given the acoustic and ar-
ticulatory evidence.

In order to weight the importance of the reconstruction er-
rors according to the relative relevance of each AF in the pro-
duction of a given speech sound, the backpropagation cost func-
tion, i.e. the mean square reconstruction error, is multiplied by
a weight matrix H:

E =
1

I

I∑
i=1

J∑
j=1

((yij − tij)hij)2 (5)

where yij is the recovered j-th AF in the i-th frame, tij is the
actual AF, hij is the relevance of the j-th AF in the i-th frame
(see section 5 for more details on AF relevance evaluation), I is
the number of samples and J is the number of AFs.

4. Experimental setup
We used the 460 British-English utterances of the msak0 male
voice of the MOCHA-TIMIT corpus [16]. They consist of si-
multaneous recordings of speech and Electromagnetic Articulo-
graphic (EMA) data (plus other articulatory data that we did not
consider). Training and testing were carried out using the same
5-fold cross-validation as in [15] and [1]. Acoustic and articu-
latory features were extracted as described in [1]. We used vec-
tors of 60 mel-filtered spectral coefficients (MFSCs) as acous-
tic input for the AAM, vectors of 39 MFCCs (first 12 MFCCs
and energy coefficients, plus deltas and delta-deltas) as acous-
tic observations in the DNN-HMM phone recognition system
and 42 AFs consisting of the x and y trajectories, plus their first
and second derivatives, of upper lip (UL), lower lip (LL), upper
incisor (UI), lower incisor (LI), tongue tip (TT), tongue blade
(TB) and tongue dorsum (TD). Note that the upper incisors ex-
hibit very small variations in all phones and are used for head-
movement correction. Nevertheless they can provide important
relative information on how an articulator is positioned with re-
spect to the others. Here upper incisors are reconstructed from
speech acoustics as the other articulators, but they are not con-
sidered during the AF relevance evaluation.

The AAM was either performed by a DNN or a set of
MDNs (whose outputs could be used to reconstruct the AFs or
to compute the relevance of each AF). The DNN is a 3-hidden
layer net with 300 nodes per each hidden layer. The input units
of the corresponding DBN were Gaussian-distributed while all
hidden units were binary. The MDNs were 1-hidden layer nets
with 60 hidden units and 3 spherical mixture components. We
trained one MDN for each AF. Both DNN and MDNs have an
input of 5 acoustic features vectors (60 x 5 MFSCs) and the out-
put is the vector of 42 AFs corresponding to the frame on which
the acoustic input is centered.

We used 3 states per phone. The state boundaries were
computed in the training utterances using the HInit, HRest and
HERest functions of the HTK [17].

The phone posteriors were computed by a 3-hidden layer
DNN, with 9 vectors of MFCCs (39 x 9 MFCCs) and the cor-
responding 9 vectors of AFs (42 x 9 AFs), when AFs were
used, as input units. Each hidden layer has 1500 units while
the output layer has 132 units (44 British English phonemes of
MOCHA-TIMIT x 3 states). The estimated phone posteriors
(not divided by the phone priors), plus phone unigrams and bi-
grams and state bigrams (all computed from the training data)
were fed into a Viterbi decoder that computed the most probable
phone sequence of each test utterance.

5. Articulatory feature relevance
We assumed that the relevance of an AF is a function of the
variance it shows when a given sound is produced.

In order to qualitatively explore the relevance-variance rela-
tion, we plotted the x-y positions of the 7 vocal tract points dur-
ing the production of different phones. Figures 1 and 2 show the
x-y plots of the positions of the 7 vocal tract points for the /b/
and /dh/ phonemes. Comparing the two plots we can observe
that the distributions of positions of the lips are smaller in the
labial sounds (where the lips are the most critical articulators)
than in the dental sounds. On the other hand, the distributions
of the tongue positions are smaller in the dental sounds (where
the tongue and particularly the tongue tip is the most critical
articulator) than in the labial sounds.

In order to quantitatively evaluate the relevance of an AF



Figure 1: Plots of the positions of the 7 vocal tract points in the
midsagittal plane over all the /b/ phones in the MOCHA-TIMIT
msak0 data.

Figure 2: Plots of the positions of the 7 vocal tract points in the
midsagittal plane over all /dh/ phones in the MOCHA-TIMIT
msak0 data.

we experimented with two methods. In the first method, for
each phone state we measured the variance of each actual AF.
In the second method we estimated the frame-wise AF variance
given the acoustic evidence computed by an MDN (equation 4).

The first method has the only aim to explore the suitability
of the relevance-variance relation. In fact it cannot be used in
practice as it needs to directly consider the actual AF values in
their phone states.

In the second method each MDN estimates the frame-wise
variance of a reconstructed AF without using any prior phono-
logical knowledge.

From each of the two variances computed with the two
methods we derived two different measurements of AF rele-
vance. One is simply the inverse of the (actual state-level or
MDN estimated frame-level) standard deviation. The other is
the inverse of the ratio between the (actual state-level or MDN
estimated frame-level) standard deviation and the overall stan-
dard deviation of the AF. The first is an absolute estimation of
AF relevance whereas the second is a relative estimation.

We used four indexes to identify the types of AF relevance.
m0 and m1 respectively refer to the absolute and the relative
relevance computed from the actual state-level variance. e0 and
e1 respectively refer to the absolute and the relative relevance
computed from the estimated frame-level variance. All the rel-
evance values were mapped into a [1 10] range.

Four different types of the weight matrix H of equation 5
were built using the four types of AF relevance.

6. Results
6.1. Articulatory reconstruction

The AF reconstruction is evaluated using the Root-mean-square
error (RMSE) and the Pearson product moment correlation co-
efficient (r).

RMSEf =

√√√√ 1

N

N∑
i=1

(of,i − tf,i)2 (6)

rf =

∑N
i=1(of,i − of )(tf,i − tf )√∑N

i=1(of,i − of )
∑

i=1N(tf,i − tf )
(7)

where N is the number of frames in the testing set, of,i is the
estimated value for the AF f in the i-th frame, tf,i is the actual
value of f in the i-th frame, of and tf are the mean of the esti-
mated and actual value of f respectively. Both RMSE and r are
averaged over all the AFs.

A first comparison between the different AAM methods
(Table1) shows that weighting the backpropagation error func-
tion slightly improves the overall AF reconstruction (both in
terms of RMSE and r). The weights computed from the
frame-level MDN-estimated-variance outperform the weights
computed from the actual state-level variance and produce a
1.3 % significant relative RMSE reduction (w.r.t. the DNN
baseline, where all AFs have the same importance).

Figures 3 and 4 show how the relative RMSE reduction is
stronger for the trajectories of the critical AFs (lips for the ’/b/’
labial phoneme and the tongue for the ’/dh/’ dental phoneme).
Note that a small RMSE reduction is observed for all articula-
tory features when the backpropagation error function is multi-
plied by a constant matrix H (this was verified using a constant
value equal to 10). That explains why a very small reduction is
shown even for some non-critical AFs in figures 3 and 4. This
might be due to the fact that, for this particular dataset, when
using a constant matrix H with constant >1, the reconstruction
error slightly decreases.

Note that a reduction of the overall reconstruction error was
not expected. In fact, the goal of the relevance weighted recon-
struction is to improve the reconstruction of what matters (i.e.,
the critical AFs) to the detriment of the reconstruction of what
is less important (the non-critical AFs).

The MDNs performed significantly worse than the DNN.
The MDNs whose results are reported in Table 1 had 3 mix-
tures and were trained for 400 epochs. We tried a larger number
of training epochs and different numbers of mixture but that re-
sulted in a higher reconstruction error. That does not exclude
that MDNs with a larger number of hidden layers and/or hidden
units or even a pre-trained MDN as in [14], might perform better
than a DNN. However the goal of the present study was not to
compare MDN and DNN performances for AAM but to explore
the utility (for acoustic-articulatory modeling) of a relevance
weighted-reconstruction. The MDN was a tool to compute the
variance-based relevance but also alternative techniques could
be used, ideally techniques that require less training time. For
example, even MDNs trained with many less training epochs
might be equally successful if a gross estimation of the variance
is sufficient (this is something we have not explored).

Figure 3: RMSE relative reduction of each recovered articu-
latory trajectory using DNN He0 w.r.t. the DNN baseline for
phoneme ’/b/’. The light green bars refer to the most critical
AFs. The overall relative RMSE reduction is 4.68%.



AAM RMSE r
DNN baseline 0.693 0.692

MDNs 0.737 0.642
DNN Hm0 0.690 0.692
DNN Hm1 0.689 0.693
DNN He0 0.684 0.697
DNN He1 0.688 0.692

Table 1: Articulatory reconstruction results averaged over the
5 splits for the following AAM methods: a) the DNN baseline
in which all AFs have the same importance, b) the MDNs, one
for each AF, c) the DNNs in which the weight matrix H is built
computing (i) the inverse of the actual state-level standard de-
viations (DNN Hm0), (ii) the inverse of the ratio between
the actual state-level standard deviations and the overall ac-
tual standard deviations (DNN Hm1), (iii) the inverse of the
MDN estimated frame-level standard deviations (DNN He0)

and (iv) the inverse of the ratio between the MDN estimated
frame-level standard deviations and the overall MDN estimated
standard deviations (DNN He1). The value in bold represents
a statistically significant reduction in RMSE compared to the
DNN baseline (p < 0.05, one-tailed t-test).

Figure 4: RMSE relative reduction of each recovered artic-
ulatory trajectory using DNN He0 w.r.t.the DNN baseline for
phoneme ’/dh/’. The light green bars refer to the most critical
AFs. The overall relative RMSE reduction is 3.4%.

6.2. Phone recognition

Table 2 shows the frame-wise classification accuracy and the
phone error rate (PER) for the DNN-HMM phone recognition
system using different types of observations. The recovered
AFs always improve phone recognition. The PER reduction
ranges from 8.4% to 10.9%. A perfect articulatory reconstruc-
tion would lead to a 26.4% PER reduction. The DNN-based
relevance-weighted reconstruction produces up to an average
2.7% PER over a DNN-based reconstruction where all AFs
are assumed to have the same relevance (DNN baseline). In
the comparison between DNN He0 and DNN baseline we ob-
served an error reduction in all cross-validation fold (figure 5).

Interestingly, the MDN recovered AFs produced a smaller
PER than the DNN baseline recovered AFs, although the over-
all MDN-based reconstruction was significantly worse than any
DNN-based reconstruction. Such a mismatch raises the ques-
tion on whether the overall RMSE and Pearson product mo-
ment correlation are the most appropriate metrics to evaluate
the reconstruction of AFs for the ultimate goal of acoustic-
articulatory modeling. Metrics (including modified versions of
RMSE and r) that dynamically take into account the phonetic
relevance of each AF seem to be more appropriate.

System Features set FwCa % PER
GMM-HMM MFCCs 38.0
DNN-HMM MFCCs 65.9 32.2
DNN-HMM MFCCs + actual AFs 73.9 23.7
DNN-HMM MFCCs + DNN baseline-RAFs 69.8 29.5
DNN-HMM MFCCs + MDNs-RAFs 69.5 29.2
DNN-HMM MFCCs + DNN Hm0-RAFs 70.0 29.1
DNN-HMM MFCCs + DNN Hm1-RAFs 70.0 29.0
DNN-HMM MFCCs + DNN He0-RAFs 70.3 28.7
DNN-HMM MFCCs + DNN He1-RAFs 70.1 28.9

Table 2: Frame-wise phone classification accuracy (FwCa)

and phone error rate (PER) using MFCCs only, MFCCs and
actual AFs, MFCCs and recovered AFs (RAFs) through the 6
methods previously described. RAFs are both in training and
testing set when they are used. Values are averaged over the 5
splits. For comparison with previous work the first row shows
the PER of the Gaussian Mixture Model-Hidden Markov Model
baseline of [15] (where recovered AFs did not produce any im-
provement over the baseline). Note that we used the same DNN-
HMM phone-recognizer as in [1]. However PER (and FwCa)
are much smaller (larger) than in [1]. This is due to a longer
pretraining of all DNNs and bug fixing of the Viterbi decoder.

Figure 5: Phone error rate (%) for each fold and on average
using the following feature sets: MFCCs (white), MFCCs +
DNN baseline - RAFs (light grey), MFCCs + DNN He0-RAFs
(dark grey)

7. Conclusion
The vocal tract articulators are not all equally important to pro-
duce a given speech sound. When reconstructing the articula-
tory features by minimizing a global reconstruction error it may
useful to try to force a more accurate reconstruction of the crit-
ical articulatory features to the detriment of the less important
reconstruction of the articulatory features. In this paper we ex-
perimented with relevance-weighted reconstruction error func-
tions for the supervised learning of Deep Neural Networks that
perform Acoustic-to-Articulatory Mapping. The relevance of
the articulatory features was computed as a function of the vari-
ance that the articulatory features show when producing a given
sound. A frame-level variance was computed using Mixture
Density Networks. Results show that our relevance-weighted
reconstruction significantly reduced the overall reconstruction
error and reduced the phone error rate of a hybrid Deep Neu-
ral Network/Hidden Markov Model phone recognizer that uses
both acoustic and (reconstructed) articulatory features.
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