
A port–arbitrated mechanism for behavior selection in humanoid

robotics

Ali Paikan

iCub Facility

Istituto Italiano di Tecnologia

Via Morego, 30, 16163, Genoa, Italy

Email: ali.paikan@iit.it

Giorgio Metta

iCub Facility

Istituto Italiano di Tecnologia

Via Morego, 30, 16163, Genoa, Italy

Email: giorgio.metta@iit.it

Lorenzo Natale

iCub Facility

Istituto Italiano di Tecnologia

Via Morego, 30, 16163, Genoa, Italy

Email: lorenzo.natale@iit.it

Abstract—Software engineering and best practices promote
modularity and composability to reduce debugging and de-
velopment time of software applications in robotics. This ap-
proach, however, increases the complexity of the system and
the effort needed to properly coordinate interactions between
modules. On the other hand programming robots to cope with
an unstructured environment requires the implementation of
highly reactive systems. Behavior-based architectures have been
proposed as a programming paradigm to build complex, yet,
reactive systems by integrating simpler modules. They require
however that modules establish special connections dedicated to
carry coordination signals. In a distributed architecture these
signals must be properly synchronized with the ones that carry
data.

This article proposes a novel method for developing reactive
systems by coordinating concurrent, distributed behaviors. In our
approach arbitration exploits the connections that deliver data
messages between modules and, for this reason, i) it intrinsically
reduces the number of links required for coordination and ii) it
can be built without changing existing modules. The proposed
architecture is discussed in detail and tested on a real scenario
on the iCub humanoid robot.

I. INTRODUCTION

Recent approaches to robot programming in the liter-
ature [1], [2], [3] push the idea that software should be
organized in modules each performing a well-defined, possibly
simple, job and that complex tasks should be then solved
by proper integration of a subset of these modules running
concurrently. Integration and coordination in large systems
is challenging and daunting task. The typical approach is to
delegate the coordination to special objects that manage the
activities of the individual behaviors. Central coordinators are
difficult to reuse and implement robustly. This solution easily
leads to brittle systems and scalability problems.

Programming robust applications considering, reactiveness,
scalability and re-usability has always been at the center of
attention of researchers. Different control architectures such as
deliberative, reactive or hybrid [4] have been studied in a wide
verities of robotic domain. Among them, the behavior-based
approach inspired from Brooks’ subsumption architecture [5]
has particular interest due to its fast response to external events.
Traditionally it has been used in robotic applications in which
reactiveness is crucial. It requires however the addition of spe-
cial connections that carry coordination signals; in distributed
architectures these signals must also be synchronized with the
ones that carry data. Nevertheless such approaches have been
successfully used in mobile robotics [6], [7] (See section II).

We introduce a mechanism for coordination of behaviors
in a distributed architecture. Our approach is based on port
arbitration, in that it uses the same links which are already
exploited to transfer data among behaviors. It therefore in-
trinsically reduces the number of extra connections needed
for coordination. Differently from traditional behavior based
architectures, modules are coordinated by arbitrating their
connections. In other words inhibition of a module is achieved
by suppressing the data it receives. Since modules can receive
data from multiple sources, this allows a finer degree of
granularity (i.e. a module can inhibit only a subset of the
connections to another module thus allowing the latter to
process data from other connections).

We implemented our approach using the YARP middle-
ware [1] and tested it by developing a complex behavior on the
iCub humanoid robot [8]. We show that using our approach we
could implement a behavior that involves a sequence of actions
by integrating pre-existing blocks and without the need to
develop a special purpose module responsible for coordination.
More importantly we developed our behavior incrementally.

Section II highlights some of the features of our proposed
mechanism and compare it with the related approaches. Sec-
tion III presents the problem addressed in the paper and de-
scribe the arbitration mechanism and its properties. Section IV
suggests some policies for tuning the connection parameters.
In Section V we describe how we have used our approach for
implementing a specific behavior on the iCub humanoid robot
and in Section VI we conclude the paper.

II. RELATED WORK

The original concept of behavior-based system is Brooks’
subsumption architecture [5] in which reactive behaviors are
used in a multilayer system and behaviors from higher (pri-
ority) levels can inhibit and suppress others. However, coor-
dinating behavior solely based on inhibition tends to limit the
flexibility and reusability of the system [4]. To overcome this
limitation Maes [9] proposes a bottom-up selection mechanism
in non-hierarchical network of behaviors. Coordination in [9]
is done by using three kind of links between the behaviors
(predecessor, successor and conflictor) and adjusting precondi-
tions in which behaviors can operate. According to Tyrrell [10]
and Hayashi et al [11] this mechanism is not well suited for
human-like action selection problems since the binary values
used for precondition result in a loss of information. [11]
also proposes an action selection method based on motivation
levels that resembles the dopamine system in animals. A

continuous waveform of motivation signals are divided in
different consciousness levels with some preassigned behaviors
in each level. Based on the signal level, corresponding behav-
iors are chosen for execution. Since behaviors are statically
prioritized, this approach imposes the same limitation of the
subsumption architecture (i.e. a behavior may need to be in
different consciousness level depending on the order in which
it appears in a sequences of action). In contrast, our approach
does not limit behaviors to be statically prioritized.

Different behavior selection mechanisms are compared
in [12], [13] and [14]. An alternative approach to compet-
itive action selection is a cooperative mechanism in which
recommendations from multiple behaviors are combined to
form a control action that represents their consensus. An
example of this type of mechanism is DAMN [15]. It uses
a centralized arbitrator to fuse the collected commands from
different behaviors and select the action which best satisfies
the prioritized goals of the system. Nowadays, due to het-
erogeneity of data type and the complexity of the control
systems, the proposed methodology is practically limited to
low-level control. However, in our approach, behaviors can
help each other to become active by enabling the relevant
connections. The centralized coordination mechanism has been
successfully used in different applications, however it can
encounter scalability problems due to the overhead associated
to transferring a relevant amount of information over several
links to the coordinator [16]. In contrast our approach does
not use any central coordinator. Inspired by voluntary action
selection in human [17], arbitration is done using regulated
stimulation levels of the outputs of behaviors. Ayllu [18] is
an architecture for distributed multi–robot behavioral control
which allows standard port–arbitrated–behaviors interaction
(message passing, inhibition, and suppression) to take place
over IP networks. This architecture shares some concepts with
our approach but it does not support important features such
as stimulation and excitation.

Integrated Behavior–Based Control (iB2C) [19] is an ar-
chitecture of behavior–based systems which supports a wide
variety of action selection and coordination mechanisms such
as priority–based and state–based arbitration, winner–take–all,
superposition and voting. Coordination in iB2C is done by
using separate signals for coordination (i.e. activation, stimu-
lation, inhibition, target rating). This in fact introduces extra
links between behaviors and causes extra overhead that could
be non-negligible in a distributed system. In our approach
coordination is performed using properties of connections and
it exploits links already used to transfer data thus intrinsically
minimizing the overhead. Another advantage of our approach
is that it can be implemented at the level of the middleware
and it does induce dependencies in the implementation of the
individual modules.

Kertesz [20] introduces dynamic behavior network (DBN)
which has some similarities to our approach such as stimula-
tion, inhibition and excitation of the behaviors in a network.
Behaviors in DBN use a set of preconditions and the stimuli
from other connected behaviors to determine their actual states
at any given time (normal, failed, activated, finished). In con-
trast, our approach does not change any conditions or internal
states of behaviors to activate or deactivate them. Instead, a
behavior can decide whether to accept an incoming data or

Gaze

Control

Object

Detector

Face

Detector
1C

2C

σ1

s1[k]

τ1

σ2

s2[k]

τ2

C
1C

2C
MUX

h

h

F

T

F

T

ARBITRATOR

x1

x2

Φ = {...}
1

Φ = {...}
2

Fig. 1. Two behaviors Face Detector and Object Detector are
connected to the same input interface (dotted box) of Gaze Control using
connections C1 and C2 . It shows how properties of the connections are
employed by the port arbitrator of the Gaze Control to coordinate other
behaviors. Please refer to the text for the definition of each symbol.

not based on the configuration of connections. Furthermore,
our coordination mechanism allows behaviors to be really
parallelized and distributed whereas in DBN parallelism is sim-
ulated and the computation of the stimuli is done in iterations.
Similar to [19] and [20], in our approach the complexity of
the problem can be decomposed in different subsystems. In
section V we show that using our approach how a complex
system is divided in subsystems that are configured, tested
individually and finally combined together to implement the
desired behavior.

III. ARBITRATING BEHAVIORS

There is no concise definition of behavior in the literature.
We refer to behavior as a computational unit with a set of
preconditions and goals. It has a set of input ports to receive
information from other behaviors and a set of output ports to
stream out the result of its activity. A behavior checks for the
condition in which to become active (e.g. upon receiving data),
processes and sends the results through its output ports. We
make the following assumptions for each behavior:

• The preconditions in which a behavior gets activated
are local to the behavior itself and they are not visible
to other behaviors. In other words behaviors cannot
directly activate or deactivate others.

• Data is streamed out if and only if the behavior is
active. For example, an object detector sends object
position information through its output port only if
the object has been detected.

We focus on the typical scenario of a publish-subscribe
architecture in which modules (behaviors) can communicate
asynchronously using connection points (ports). The key fea-
tures we require are i) the output of a behavior can be
connected to one or more input ports of other behaviors and ii)
multiple outputs from different behaviors can be connected to
the same input port of another behavior. For practical reasons
we developed our architecture on top of the YARP middleware
[1].

In the example from Figure 1, Face Detector and
Object Detector can both send 3D position information

to Gaze Control which controls the robot’s head to gaze
accordingly. Behaviors run in parallel and can be distributed
over a cluster of computers that communicate through network
interfaces. Since there is no synchronization among behaviors,
data can be delivered to an input port at any time, potentially
causing conflicts. For example, in a simple scenario where a
person keeps an object in front of the robot, Face Detector
and Object Detector compete to get data to Gaze Control. An
appropriate coordination mechanism avoids conflicts and, at
the same time, it allows obtaining different behaviors (looking
at a face or looking at the object).

We propose an arbitration mechanism between multiple,
competitive connections to the input port of a behavior. As
an example Figure 1 illustrates the arbitration in the case
of a port with two connection (here Face Detector and
Object Detector are competitive connections to Gaze

Control)1. Messages arrive to a port from different channels
(connections) and generate events. Arbitration happens in three
stages: computation of the activation values, evaluation of the
rules and selection. First events are accumulated with leaky
integrators to produce stimulation values for all connections. A
connection becomes active when its stimulation level reaches
a certain threshold. In the second stage, port arbitrator selects
a single connection among the ones that are active at each
time by evaluating a set of rules (i.e. written in first order
logic) associated to each connection. This “winner” connection
delivers data to the behavior whereas data from the other
connections gets discarded. As it is shown in Figure 1, the
port arbitrator is implemented as a multiplexer that let, at most,
one active connection deliver its data to the component at each
time.

We describe here the parameters of each connection. In
the following sections we demonstrate how these parameters
can be used to properly arbitrate multiple connections. Each
connection Ci has the following parameters:

Ψi =< σi, τi, Φi > , i ∈ {1 .. m}

Ψi is a list of the properties of ith connection (identified by
Ci) to an input port with m connections. σi is the stimulation
gain and τi is the damping time. Φi is the selection rule
associated to the connection Ci. In the following sections we
explain how the selection rules are represented in first order
logic based on the activation state of the connections.

A. Computation of the activation values

Figure 2 illustrates how the activation value of each connec-
tion is computed. Arbitration cycles and data delivery happen
at discrete events in time and are triggered whenever new
messages arrive at the port from any connection Ci. Time
values tk k = 0,1,2 .. . are associated to these discrete events
using an internal clock.

There is a stimulation level si[k] (at time tk) associated to
every connection Ci, i ∈ {1 .. m}. All m stimulation levels in

1Notice that we are aware that several models for the control of attention
have been proposed in the literature that are much more appropriate for this
specific task. In this paper we use the control of gaze as an example to
demonstrate and validate the proposed mechanism.

+1

τ

σ

active

x

s [k]

t

s[k]

0

Fig. 2. Computation of the stimulation and activation levels for each
connection. s[k] is the stimulation level at time tk . σ is stimulation gain and
τ is damping time. Stimulation is accumulated every time a new message
arrives and it continuously decays over time. The connection is in active state
once cumulative stimulation reaches the threshold and until it gets completely
discharged.

the port are updated at every instant k according to an expo-
nential decay rule. In addition, the stimulation level sl [k] that
corresponds to the channel l which has received the message,
is increased by summing the corresponding stimulation gain
σl , formally:

si[k] =

si[k−1] ·

(

1−e
λ(tk−tk−1−τi)

τi

)

∀i ∈ {1 ... m, i 6= l},

si[k−1] ·

(

1−e
λ(tk−tk−1−τi)

τi

)

+σi i = l,

(1)

where λ and τi together define the decay constants of the
exponential function. Next, si is saturated to be within [0,1].

Equation (1) formulates the calculation of si[k]. When si[k]
reaches the threshold 1.0, the connection Ci is in active state
until it gets completely discharged and decays to zero. To
simplify notation we drop dependence from k and define the
activation value xi as:

xi =

{

true if Ci is active ,

false otherwise.
(2)

B. Representation of the rules

As we have mentioned previously, an active connection Ci

(i.e. its xi = true) has the opportunity to be selected by the
arbitrator based on the selection rule specified by Φi. The rule
simply provide the necessary constraint in term of activation
values x for the connection Ci to be selected by the port
arbitrator 2.

In the example from Figure 1, if data from connection C1

of Face Detector is selected by the arbitrator at Gaze
Control, the robot will gaze at the face. To gaze at a detected
object, the port arbitrator should select the connection C2 to
receive the object position data from Object Detector.
Suppose that in the example in Figure 1, we want the robot
to track an object (continuously gaze at the object) when it
appears in the view of the robot. This means that connection
C2 should be selected when it is in active state (i.e. x2 = true),
formally: Φ2 = x2.

2A rule consistency validation is performed during the design time to ensure
the rules specified in the port arbitrators do not contain contradiction.

Imagine now we also want to track the face of a person,
but only if there is no object in the scene. In other words,
connection C1 should be selected if active, but only if C2

is NOT active. Therefore the corresponding rule should be
specified for C1 and added to the arbitrator:

Φ1 = x1 ∧¬x2

In another scenario, suppose that we want the robot to gaze
at an object if there is also a person in the scene, in terms of
connections this means that connection C2 should be selected
if both C1 and C2 are active:

Φ2 = x2 ∧ x1

In this case, we are not interested in tracking the face.
Therefore we add the following rule:

Φ1 = false

This specifies that data from connection C1 is never delivered
to the Gaze Control.

C. Selection Mechanism

Using the above equations, the selection mechanism is
straightforward. When data arrives from connection Ci to an
input port, the corresponding arbitrator has to decide whether
to accept or discard it. First using equations 1 and 2 the
activation values (xi ... xm) are updated. The rule specified
in Φi is structured in Binary Decision Diagram (BDD) [21].
The arbitrator, then, evaluates the rule and if the constraints
specified by the rule is satisfied, the index i of the current
connection is given to the multiplexer which in turn opens the
corresponding channel to deliver data from Ci to the behavior.
Otherwise the data is discarded (In Figure 1, this “winner”
connection is indicated by h). Notice that when the rules Φi

are specified, a consistency check ensures that only a single
connection can be active at a time.

IV. PARAMETERS TUNING AND DESIGN POLICY

The selection mechanism using connection parameters
allows for creating various complex scenarios using simple
primitive behaviors. The stimulation gain σ and the damping
time τ are used together to control the reactiveness and
persistency of the output (the effect of the behavior). As
an example consider a behavior which checks the sensors
of the fingertips of a robot and sends events whenever the
robot touches an object. If these events are used by another
behavior for collision avoidance in a safety context, a higher
value for σ should be chosen to obtain a prompt reactive
behavior. Alternatively, if the output is used to stimulate a less
time–critical behavior (i.e a grasping action), smaller value
of σ is more preferable to collect enough evidence from the
fingers before grasping the object. Stimulation gain σ should
be used together with damping time τ . It should be clear that
if stimulation rate (the elapsed time between two consecutive
spikes) is larger than damping time τ (i.e. data infrequently
arrives with a large delay), the stimulation level si can never
reach the threshold.

V. EXPERIMENTAL VALIDATION

In the following section we present an experiment with
the iCub humanoid robot. The main goal of the experiment is
to demonstrate that our port-arbitrated mechanism allows for
i) coordinating different distributed behaviors which compete
to control the robot’s actuators, ii) breaking down a complex
system in subsystems that are configured, tested individually
and finally combined together and iii) implementing a system
that is reactive to the changes in the environment. We call this
behavior “Take and return”. The robot should perform a series
of actions: (A) look for an object, (B) reach for the object,
(C) grasp the object, (D) look for a person, (E) approach the
person and (F) release (return) the object.

A. First experiment: Take an object

In the first experiment we combine some simple behaviors
to build a system which allows the robot to take an object.
The user shows a known object to iCub and the robot tracks it
with the eyes and grasps it by the hand. Figure 3(a) represents
the behaviors and the configuration of the connections. For the
sake of brevity, non–arbitrated connections are not shown in
the figure (e.g. camera inputs). Object Detector receives
streamed image frames from the robot cameras and produces
the 3D position of the object when detected. Gaze Control

and Arm Control receive a 3D position in the robot root
frame and respectively control the head of the robot to gaze at
the target and move the hand of the robot to the target position.
Grasp Detect monitors the positions of the object and
the hand to determine when they are close enough and issue
a request to grasp. Hand Control controls opening and
closing of the hand upon receiving release or grasp command.

As shown in Figure 3(a), the output of Object

Detector is connected to Arm Control and Gaze

Control which causes the robot to track and attempt to reach
for the object. The stimulation level σ = 0.2 and damping time
τ = 3 indicate that tracking and reaching should be started
if there are enough events from Object Detector (i.e.
at least 5 events within 3 seconds). Simultaneously, Grasp
Detect checks if the object is graspable and if this is the case,
it generates a grasp command to Hand Control. Table I
represents the arbitration rules associated to each connection
from Figure 3(a).

Constraint Φ1 = x1∧¬x2 implies that data from connection
C1 should be selected if C2 is inactive. Φ2 = false specifies
that data from Grasp Detect will be never delivered to the
Arm Control. The same rules are applied for C3 and C4 in
the arbitrator of Gaze Control. These are used to inhibit
commands from Object Detector and therefore prevent
the motion of the hand and head of the robot while grasping
the object. Φ5 = x5 implies that grasp commands from Grasp

Detect can be freely sent to the Hand Control for grasp
whenever the object is graspable.

TABLE I. ARBITRATION RULES FOR “TAKE AN OBJECT”

Arm Control Gaze Control Hand Control

Φ1 x1 ∧¬x2 - -

Φ2 false - -

Φ3 - x3 ∧¬x4 -

Φ4 - false -

Φ5 - - x5

Gaze
Control

Detector

Object

Arm
Control

Grasp
Detect

σ:0.2, τ:3

σ:0.2, τ:8

Hand
Control

1C

2C

3C

4C

5C

(a) Take an object

Face

Detector

Release

Detect

σ:0.2, τ:3

σ:0.2, τ:8

Gaze

Control

Arm

Control

Hand

Control

6C

7C

8C

9C

10C

(b) Return an object

Fig. 3. Configuration of the behavior network in “Take an object” and “Return
an object” scenarios.

TABLE II. ARBITRATION RULES FOR “RETURN AN OBJECT”

Arm Control Gaze Control Hand Control

Φ6 x6 ∧¬x7 - -

Φ7 false - -

Φ8 - x8 ∧¬x9 -

Φ9 - false -

Φ10 - - x10

B. Second experiment: Return an object

In the second experiment we build another network of
behaviors that allows the robot to return an object to the user
(assuming it has grasped it). The configuration of the network
is very similar to the previous experiment. As shown in Figure
3(b) Face Detector now searches for a human face in the
images and, when successful, it provides its 3D position to
Arm Control and Gaze Control. This causes the robot
to track the face and to extend the arm towards it. Release
Detect, generates release commands to Hand Control if
the hand is pointing toward the face, causing the robot to
release the object. Table II represents the required arbitration
rules to implement the scenario. Similar to the “Take an object”
scenario, during release of the object Release Detect

inhibits the movements of the arm and the head. Notice that for
simplicity this behavior assumes that the robot has grasped the
object. The module that explicitly checks this condition will
be added in the next section.

C. Third experiment: Take and return scenario

In the final experiment (“Take and return”), we exploit
behaviors implemented previously for “Take an object” and
“Return an object”. Since we want the robot to return the object
only if it has previously grasped it, we first introduce a new
behavior Grasped which combines the information from the
touch sensors and the hand encoders to produce a status mes-
sage when the fingers are closed and the presence of an object
is detected in the hand. The output of Grasped should inhibit
all the connections in “Take an object” and enable “Return an
object”. Figure 4 represents the configuration of behaviors. The
connections that were previously used in “Take an object” and
“Return an object” are shown here in gray. This emphasizes the
fact that it is possible to build complex behaviors incrementally
using existing subsystems without modifications. This is done
by adding constraints to the arbitration rules of the subsystems.
For example in Figure 4 we want to inhibit tracking when
the robot is holding the object. This is achieved by adding
the constraints “¬x12” to Φ3 in the subsystem “Take an
object”. This has the effect of inhibiting data from Object

Detector (i.e. C3) when the output of Grasped (i.e. C12)
is active. The necessary rules for inhibiting other connections

Look
Around

Grasped

Release
Detect

Face
Detector

Grasp
Detect

Gaze
Control

Arm
Control

Rest
Arm

Detector

Object

Hand
Control

10C

1�C

1�C

�C

8C

9C

11C

1�C

3C

4C

�C

7C

13C

14C

�C

1C

Fig. 4. Configuration of behaviors in “Take and Return” scenario.

TABLE III. ARBITRATION RULES FOR “TAKE AND RETURN”

Arm Control Gaze Control Hand Control

Φ1 (x1 ∧¬x2)∧¬x13 - -

Φ2 false - -

Φ3 - (x3 ∧¬x4)∧¬x12 -

Φ4 - false -

Φ5 - - x5 ∧¬x15

Φ6 (x6 ∧¬x7)∧ x13 - -

Φ7 false - -

Φ8 - (x8 ∧¬x9)∧ x12 -

Φ9 - false -

Φ10 - - x10 ∧ x15

Φ11 - ¬(x3 ∨ x4 ∨ x8 ∨ x9) -

Φ12 - false -

Φ13 false - -

Φ14 ¬(x1 ∨ x2 ∨ x6 ∨ x7) - -

Φ15 - - false

Φ16 - - ¬(x5 ∨ x10)

in “Take an object” to Arm Control and Hand Control

are added similarly. Notice that arbitration rules are added
(and removed) by specifying connection parameters to the
port arbitrators and without changing the code implementing
the individual modules. Table III represents the full list of
required rules to implement the “Take and Return” scenario
using behaviors from Figure 4.

We now add modules to put the arm in a resting po-
sition and randomly look around in search for the object.
The module Look Around that sporadically sends random
position commands to Gaze Control in search for objects
or faces. This behavior must be clearly inhibited while “Take
an object” and “Return an object” are active. To do so we
add the necessary constraints to the arbitration rule Φ11 of
connection C11 (i.e. Φ11 = ¬(x3 ∨ x4 ∨ x8 ∨ x9)). Rest Arm

attempts to move the arm to a predefined resting position
by periodically sending release commands and arm–resting–
position commands to Arm Control and Hand Control.
Appropriate constraints are added to Φ14 and Φ16 to inhibit
this behavior when the robot is taking or returning the object.

The arbitration mechanism was implemented using
YARP [1] ports. The “Take and return” scenario was then

140 150 160 170 180 190

Act i on sequences

A B C D E F A B C

0

0. 5

1

140 150 160 170 180 190

Rest Ar m

0

0. 5

1

140 150 160 170 180 190

Face Det ect or

0

0. 5

1

140 150 160 170 180 190

Obj ect Det ect or

0

0. 5

1

140 150 160 170 180 190

Gr asp Det ect

0

0. 5

1

140 150 160 170 180 190

Gr asped

0

0. 5

1

140 150 160 170 180 190

Rel ease Det ect

(C)1

(C)2

(C)6

(C)7

(C)13

(C)14

Fig. 5. Arbitration in Arm Control during the “Take and Return” scenario.
The plots show the values of Si[k] and the selected connection by the arbi-
trator of all the m input connections from the modules Release Detect,
Grasped, Grasp Detect, Object Detector, Face Detector and
Rest Arm (see Figure 4). Horizontal axis is time t and vertical axis
represents stimulation values Si[k]. Stimulation are plotted in green when the
corresponding connection is selected and in orange otherwise. The bottom
graph shows the action of the resulting behavior, i.e. A: looking for an object,
B:reaching the object, C:grasping, D:looking for a person, E:approaching
person and F:releasing the object.

tested on the iCub robot (see Figure 6) 3. Figure 5 plots the
stimulation values of all the connections to Arm Control

during the experiment. Stimulation are plotted in green when
the corresponding connection is selected and in orange oth-
erwise. At the beginning and before t = 140, the hand of
the robot is empty (Grasped is inactive) and Rest Arm

can commands Arm Control and Hand Control to keep
the robot arm in a resting position. This corresponds to the
behavior A in which the robot is looking for the object. Notice
that at the same time, Face Detector is also activated
(a person enter the scene); however since the selection of
Face Detector depends on the output of Grasped (i.e.
Φ6 = (x6 ∧ ¬x7) ∧ x13), the required constraints are not
satisfied and data from Face Detector is not delivered
to Arm Control. At t = 140, the person shows the object

3The video demonstrates this behavior can be accessed on-line at:
http://youtu.be/SzHRLm2z47I.

Object Detector

Face Detector

A

Object Detector

Face Detector

B

Object Detector

Face Detector

C

Object Detector

Face Detector

D

Object Detector

Face Detector

E

Object Detector

Face Detector

F

Fig. 6. iCub performing “Take and Return” scenario. In A: the robot is
looking for the object, B: reaching for the object, C: grasping the object, D:
looking for a person while holding the object, E: approaching the person and
F: releasing the object.

to the robot; this increases the simulation level of Object
Detector to activation and the robot reaches for the object
(this corresponds to behavior B). At t = 142, Grasp Detect

is stimulated; this prevents the robot’s arm from moving and
at the same time sends grasp commands to Hand Control.
This corresponds to behavior C in which the robot grasps
the object. Notice that during B and C Rest Arm is also
inhibited. At this point the robot holds the object (behavior
D), Grasped is active. The robot cannot reach for another
object. This can be noticed in the plot of the activation value
C1 corresponding to the module Object Detector: the
latter is stimulated but its output gets inhibited by Grasped.
At t = 174, the person enters again in the scene. Face

detector is now activated and can be selected by the
arbitrator because Grasped is active. This makes the robot
move the hand towards the face (behavior E). At t = 178
Release Detect gets activated; this causes the robot to
release the object (behavior F). It also inhibits commands from
Face detector and Rest Arm.

During the “Take and return” experiment the behavior
of the robot was tested under different conditions (e.g. by
showing a face before grasping or by showing the robot another
object after grasping). These tests demonstrated that the overall
behavior is intrinsically reactive to the environment. All behav-
iors, in fact, continuously monitor the conditions under which
they are activated. Unexpected situations are thus automatically
handled by the network of behaviors, even if they were not
explicitly considered at design time. A particular situation in
the experiment explicitly demonstrated this. While the robot
was returning the object, the user decided to anticipate the
robot and took the object directly from the hand before the
reaching command was completed. As a consequence, the

http://youtu.be/SzHRLm2z47I

stimulation of Grasped decreased and prevented all behaviors
in “Return an object” to run. Finally the output of Rest Arm

were no longer inhibited and could command the arm to go
back to the initial state. The system therefore went back to the
initial state (A).

VI. CONCLUSION

This article has introduced an action selection mechanism
for a network of behaviors based on port arbitration. We have
illustrated that our approach allows to implement a non-trivial
behavior that involves a sequence of actions. Remarkably,
we have shown that the final behavior can be incrementally
built as a composition of existing, simpler behaviors. Our
approach is also fully distributed and minimizes the additional
links required to perform arbitration. We tested the behavior
in different conditions and demonstrated that the resulting
behavior is intrinsically robust and reactive to unexpected
changes in the environment. Perhaps more importantly, since
no explicit modules are required to manage the coordination,
no task dependent code was written to implement the final
behavior which as a result was exclusively built out of re-
usable modules.

The work presented is a first one in this direction and
we are aware of certain limitations. Firstly our approach
requires setting a certain number of parameters and rules.
In the examples reported in the paper this was in practice
quite intuitive to do; however this may not scale well with
the number of modules and the complexity of the behavior.
To facilitate writing the rules we are studying a technique that
allows extracting arbitration rules automatically from a higher
level behavioral representation. Secondly, since coordination is
completely distributed, it is also more difficult to characterize
the current state of the system and detect or monitor the
behavior of the system as a whole. This information is however
present in the system and it could be made available by
advertising the connection parameters (although this is not
implemented in the current system).

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7 ICT) under grant agreement No. 270273
(Xperience). The authors would like to thank all the partners
of the project for their valuable comments.

REFERENCES

[1] L. Metta, G. Fitzpatrick, P. and Natale, “YARP: Yet Another Robot
Platform,” International Journal on Advanced Robotics Systems, vol. 3,
no. 1, pp. 43–48, 2006.

[2] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE

International Conference on, vol. 3. IEEE, 2001, pp. 2523–2528.

[3] D. Brugali and P. Scandurra, “Component-based Robotic Engineering
Part I : Reusable building blocks,” vol. XX, no. 4, pp. 1–12, 2009.

[4] D. Nakhaeinia, S. H. Tang, S. B. Mohd Noor, and O. Motlagh, “A
review of control architectures for autonomous navigation of mobile
robots,” Int. J. Phys. Sci, vol. 6, no. 2, pp. 169–174, 2011.

[5] R. Brooks, “Intelligence without representation,” Artificial intelligence,
vol. 47, no. 1, pp. 139—-159, 1991.

[6] B. Woolley and G. Peterson, “Real-time behavior-based robot control,”
Autonomous Robots, no. January, pp. 233–242, 2011.

[7] C. Armbrust, M. Proetzsch, B. H. Schäfer, and K. Berns, “A Behaviour-
based Integration of Fully Autonomous, Semi-autonomous, and Tele-
operated Control Modes for an Off-road Robot,” in Proceedings of the

2nd IFAC Symposium on Telematics Applications, Timisoara, Romania,
2010.

[8] G. Metta, G. Sandini, and D. Vernon, “The iCub humanoid robot: an
open platform for research in embodied cognition,” Proceedings of the

8th workshop on performance metrics for intelligent systems, pp. 50—
-56, 2008.

[9] P. Maes, “How to do the right thing,” Connection Science, 1989.

[10] T. Tyrrell, “An Evaluation of Maes’s Bottom-Up Mechanism for Be-
havior Selection,” Adaptive Behavior, vol. 2, no. 4, pp. 307–348, Mar.
1994.

[11] E. Hayashi, K. Ueyama, and M. Yoshida, “Autonomous action selection
with motivation-based consciousness and behavior architecture of an-
imal,” The 5th International Conference on Automation, Robotics and

Applications, pp. 294–299, Dec. 2011.

[12] P. Pirjanian, “Behavior coordination mechanisms-state-of-the-art,” In-

stitute for Robotics and Intelligent Systems, School of Engineering,

University of Southern California, Tech. Rep. IRIS-99-375, 1999.

[13] J. M. MacKenzie, Douglas C and Arkin, Ronald C and Cameron,
“Multiagent mission specification and execution,” Robot colonies, pp.
29–52, 1997.

[14] M. Scheutz and V. Andronache, “Architectural mechanisms for dynamic
changes of behavior selection strategies in behavior-based systems,”
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

on, vol. 34, no. 6, pp. 2377–2395, 2004.

[15] J. K. Rosenblatt, “DAMN: a distributed architecture for mobile navi-
gation,” Journal of Experimental & Theoretical Artificial Intelligence,
vol. 9, no. 2-3, pp. 339–360, Apr. 1997.

[16] T. J. Prescott, “Action selection,” Scholarpedia, vol. 3, no. 1, p. 2705,
2008.

[17] J. Zhang, “Selection and inhibition mechanisms for human voluntary
action decisions,” NeuroImage, Jul. 2012.

[18] B. B. Werger, “Ayllu: Distributed port-arbitrated behavior-based con-
trol,” in In Proc., The 5th Intl. Symp. on Distributed Autonomous

Robotic Systems. Citeseer, 2000.

[19] M. Proetzsch, T. Luksch, and K. Berns, “Development of complex
robotic systems using the behavior-based control architecture iB2C,”
Robotics and Autonomous Systems, vol. 58, no. 1, pp. 46–67, 2010.

[20] C. Kertész, “Dynamic behavior network,” Applied Machine Intelligence

and Informatics, pp. 207–212, 2012.

[21] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” Computers, IEEE Transactions on, vol. 100, pp. 677–691, 1986.

	Introduction
	Related work
	Arbitrating behaviors
	Computation of the activation values
	Representation of the rules
	Selection Mechanism

	parameters tuning and design policy
	Experimental validation
	First experiment: Take an object
	Second experiment: Return an object
	Third experiment: Take and return scenario

	Conclusion
	References

