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Abstract— Calibration continues to receive significant atten-
tion in robotics because of its key impact on performance
and cost associated with the operation of complex robots.
Calibration of kinematic parameters is typically the first
mandatory step. To this end, a variety of metrology systems and
corresponding algorithms have been described in the literature
relying on measurements of the pose of the end-effector using
a camera or laser tracking system, or, exploiting constraints
arising from contacts of the end-effector with the environment.
In this work, we take inspiration from the behavior of infants
and certain animals, who are believed to use self-stimulation or
self-touch to “calibrate” their body representations, and present
a new solution to this problem by letting the robot close the
kinematic chain by touching its own body. The robot considered
in this paper is sensorized with tactile arrays for a total of
about 4200 sensing points. The correspondence between the
predicted contact point from existing forward kinematics and
the actual position on the robot’s ‘skin’ provides sample data
that allows refining the kinematic representation (DH param-
eters). The data collection procedure is automated—self-touch
is autonomously executed by the robot—and can be repeated
at any time, providing a compact self-calibration system that
does not require an external measurement apparatus.

I. INTRODUCTION

Practically all robots performing manipulation tasks rely
on models of their kinematics and dynamics. Their success
is largely determined by the accuracy of such models. This
is even more so if they operate with limited feedback, as
it is often the case when we consider humanoid robots in
real-time interaction with the environment. The models are
typically based on mechanical design specifications (such as
CAD drawings) of the robot. However, inaccuracies creep in
in many ways as for example in the assembly process, in
mechanical elasticity, or simply because of cheap design or
components. Therefore, the actual model parameters of every
robot exemplar have to be found by means of a calibration
procedure.

In this work, we will be concerned with calibration of
the standard Denavit-Hartenberg (DH) parameters that fully
describe the robot’s kinematics through a series of rotations
and translations from the base of the robot up to the end-
effector. If the configuration of every joint is known, the full
pose (3D position and 3D orientation) of the end-effector can
be obtained in the base reference frame. However, in order
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to calibrate the robot’s parameters additional information
is required. This can be obtained by observing the end-
effector configuration (or several of its components) w.r.t.
the base. The literature provides various examples of appa-
ratuses that can measure one or more of the components
of the end-effector pose employing mechanical, visual, or
laser systems. An overview of these—so-called open-loop
calibration methods—is presented in [1], [2]. Alternatively,
physical constraints on the end-effector position or orienta-
tion can substitute for measurements (cf. [1], [2] again for
an overview). As the robot is in contact for example with
the ground, these methods are called closed-loop. In fact,
the problem can be framed in such a way that the open-
and closed-loop methods are mathematically equivalent—the
external measurement systems can be modeled as additional
joints and links that close a virtual loop; in both cases
the excess of sensed over actual degrees of freedom is
needed, as expressed by the calibration index [1], which
at the same time defines the number of equations per
pose that are available for calibration. Recently, apparatuses
extending the kinematic chain using a laser pointer have
become popular (e.g., [3], [4]). Different arrangements have
different calibration indices, accuracy, requirements on the
environment, and cost. Nevertheless, all of them invariably
require to know beforehand a number of quantities from the
robot’s environment (such as a measurement system with a
known pose w.r.t. the robot base, a fixed contact point in the
environment where the robot can be attached, a surface that
is known to be planar on which the robot can slide, etc.).
These conditions have to be present for recalibration to be
performed.

This has motivated alternative solutions to the self-
calibration problem that are also “self-contained” and can be
performed autonomously by the robot. One option is self-
observation using a stereo camera mounted on the robot.
This has been shown in a humanoid robot in [5] and in [6]
in a humanoid torso setup. The limit of these approaches
is usually to be found in the accuracy of the pose obser-
vation from visual input. Special markers need to be used
and attached to known positions on the robot, such as on
the end-effector. Alternatively, inertial sensors can be used.
Xsens for example developed a wearable setup for humans
composed of several inertial measurement units (IMUs) [7],
which, however, requires a specific a priori body model.
Mittendorfer and Cheng [8] presented a method that uses data
from accelerometers distributed on the surface of a robot (this
matches the artificial skin they developed [9]) to calibrate
the DH parameters. Other approaches that do not rely on an
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explicit given representation—like the DH parameters—, but
that learn more implicit relationships between proprioceptive
and visual variables, for example, have been also developed
(see [10] for a review).

In this article, we present an approach that closes the
kinematic loop in a completely new way: i.e. by self-touch.
Our inspiration is in biology: infants do not have access
to calibration chambers or ground truth measurements. In
addition, in early infancy, the visual system is still immature,
thus an unlikely source of accurate calibration information.
A possible “self-calibration” strategy entails therefore self-
stimulation: touching their own body gives rise to unique
stimulation patterns—tactile stimulation on the touching and
the touched part, together with corresponding proprioceptive
feedback [11], [12]. From a robotics point of view, this
constitutes a compact calibration procedure that can be
repeated at any given time and that does not incur any
additional cost. Furthermore, not only the kinematic model,
but also the geometry of the robot (its volume in space) can
be learned. The new requirements induced by this approach
are: (i) the availability of tactile arrays on the robot’s surface;
(ii) a sufficient agility to permit self-touch (or self-collision)
configurations; (iii) the availability of a controller—such as
hybrid position-force control—that allows safe execution of
the movements which generate self collisions. These three
conditions are satisfied by the iCub humanoid robot (see
[13] for the platform in general, [14] for the whole-body
skin, and [15] for the mechanical design)—the experimental
platform employed in this work. The method proposed is
however applicable to a much wider set of platforms. First
and foremost, solutions to robot tactile sensing are now
numerous (see [16] for a survey)—many of them with the
ambition of providing a portable solution that can be simply
attached to robots of any shape. Second, any robot that
possesses multiple limbs—especially humanoid robots—will
be able to self-touch (apart from pathological cases). Third,
many robots have force/torque sensing and corresponding
controllers that can actively control impedance, thus allowing
for safe interactions with the environment and with them-
selves (e.g., [17]).

We will present a method for calibration using self-touch
and describe its experimental validation. The theoretical
contribution consists in an advantageous transformation of
the problem of controlling two serial chains (like two arms
of a humanoid robot) to self-collide at a certain point in
space into a single floating-base serial chain that originates
at the contact point and ends in the “end-effector” of the
other arm—the point that is “touching”. Interestingly, this
method encompasses both open- and closed-loop calibration.
If different points on the robot’s skin are touched, an initial
calibration of the skin serves as a “metrology” to observe the
3D position of the end-effector. This can be used for calibrat-
ing the DH parameters only, or, simultaneously, to improve
the calibration of the tactile array. Alternatively, keeping the
same contact point and varying the position of the joints
constitutes a closed-loop calibration setup, where the end-
effector is constrained in a known position. The advantage

Fig. 1: The iCub robot (left) and its kinematic structure
(right). (from [15])

of our approach is that a large number of such points are
automatically available corresponding to the skin sensors’
positions. The experimental validation in this work uses the
first method: contact points are varied and corresponding
joint configurations are recorded. Optimization of the DH
parameters is then performed starting from different initial
configurations.

This article is structured as follows. In Section II, the robot
and the scenario are presented. A solution to the self-touch
problem is developed, which is part of our contributions.
The experimental protocol and the optimization problem
are defined. The optimization experiments are presented in
Section III, followed by Conclusions and Future work.

II. METHODS AND EXPERIMENTAL SETUP

In this section, we present the experimental platform and
the components most relevant for this work: that is, the iCub
overall kinematics and the artificial skin. Then we introduce
the implementation of movements that generate controlled
self-collisions which in turn involves a reformulation of the
kinematic representation of the task, an inverse kinematics
solver and a corresponding controller. Finally, we present the
data collection and optimization procedures for the update of
the DH parameters.

A. The iCub humanoid robot

The iCub (Fig. 1, left) is an open-source platform for
research in cognitive robotics [13]. Its mechanical design is
detailed in [15].

1) Kinematic representation: In this work, we will be con-
cerned with the upper body of the robot only. Its kinematic
structure can be seen in Fig. 1, right. It consists of revolute
(1 DoF) joints only.

2) Artificial skin: The iCub has recently been equipped
with an artificial pressure-sensitive skin covering most body
parts [14]. The latest iCub version contains approximately
4200 tactile elements (taxels) [15]—in the fingers, palms,
forearms and upper arms, torso, and lately also in the legs
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and feet. In the experiments performed in this work, we
restrict ourselves to the forearm, which is covered by two
skin patches of 84 and 192 taxels. Their shape and activation
when the robot is touched can be seen in Fig. 2. A calibration
of the skin has been performed in [18]—the pose of each
taxel in the reference frame of the corresponding link is
available.

(a)

(b)

Fig. 2: Self-touch experiment. (a) The iCub touched on
its left forearm by the experimenter; corresponding skin
activation shown on the left. (b) The iCub touching the
previously stimulated point using the index finger of the
contralateral arm.

B. Self-touch implementation

From a robotic perspective, self-touch is the closure
of an open kinematic chain. Clearly, robotic manipulators
are designed with a different goal in mind—reaching in
the operational space—and self-collisions are typically not
desirable in the first place. In what follows, we will be
specifically concerned with the case of self-collision, or self-
touch, of two manipulators whose operational spaces are
overlapping—like two arms of a humanoid robot. In order for
the two end-effectors to collide, standard techniques could be
used: a dual inverse kinematics task for each of the arms with
the target set to any point of the shared operational space.
However, a very accurate model is necessary to achieve
contact. In addition, we are interested in calibrating the
whole 3D geometry of the robot, not only the mapping
from the base to the end-effector. Hence, other parts of the
body (in this paper the forearm) need to be touched by the
contralateral arm.

1) Difficulties of classical approach to self-collision of
two robotic manipulators: A schematic illustration of this
situation is depicted in Fig. 3a: without loss of generality,
we can assign the point to be touched (blue cross) to the
left forearm; thus, the goal is to reach this point with the
end-effector EE1 of the contralateral arm (the DoF in the
schematics do not match those of the real robot). In this case,
we are facing the following difficulties:

i Limited number of Degrees of Freedom (DoF) for the
task and kinematic constraints. The closer the desired
point of contact to the base of its kinematic chain (i.e.
O2 in Fig. 3a), the smaller number of DoF are usable
to position the manipulator in a suitable configuration
for being reached by the contralateral one. In addition,
the operational space of a manipulator is generally
bigger at a certain distance from the base and shrinks
as one moves toward the origin of the kinematic
chain. However, since many self-touch configurations
are located closer to the origin of the chain, this results
in poor reachability/manipulability measure.

ii Defining the point-of-contact (PoC) in operational
space. In view of point i), there is only a limited
number of configurations that realize self-touch and
sometimes no solution exists. Moreover, the coordi-
nates of the solution are unknown. Therefore, a suitable
heuristics is needed in order to find the common
solution of two inverse kinematics problems.

iii Undesired self-collisions. Apart from the specifically
requested contact point, collisions between other parts
can occur. Some body parts are not covered by skin
(e.g., joints) and some parts, like fingers, are very
fragile.

2) Reformulating the kinematic chain: From two fixed-
base serial chains to a single floating-base serial chain: The
above mentioned difficulties can be significantly mitigated if
the problem is reformulated: instead of parallel control of
two kinematic chains, the task can be transformed into the
control of a single chain that spans from the point to be
touched to the contralateral end-effector. The new situation is
schematically depicted in Fig. 3b. Under this reformulation,
the task is to move the end-effector EE to the origin O of
the kinematic chain. Compared to the previous situation, this
brings about one key advantage, i.e. the final Cartesian PoC
of the two arms is defined implicitly since the base of the
kinematic chain is floating. The inverse kinematic solution
will move both the base and the end-effector in order to
make them converge at a specific point of the 3D operational
space. To this end, first, one part of the kinematic chain is
“reversed”—because it has to be traversed “upside down”,
from the point to be touched up to the shoulder (O2 in Figure
3a). Second, an inverse kinematic solver has to be employed
to get the solution to this task. The next paragraphs describe
the reversal of the kinematic chain, whereas the design of
the solver will be detailed in the next section.

The description of the kinematics is typically based on
the Denavit Hartenberg (DH) convention [19] with four
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EE2

O2O1

EE1

PoC

(a) Classical Approach: the two arms, with origins O1 and O2,
corresponding to the shoulders of the iCub, and end-effectors EE1

and EE2 located in the palms of its hands, are controlled in parallel.

EE

−−→zEE

O

−→nO
PoC

(b) Proposed Approach: the problem has been reformulated into a
single floating-base serial chain, with origin O in the point to be
touched and end-effector EE in the contralateral arm.

Fig. 3: Comparison of approaches to self-collision. The
blue cross is the point to be touched (left forearm), whereas
the red one is the final Cartesian point in which the two arms
get in contact (PoC); the grey links are either not controlled
or fixed.

parameters for each joint. With an initial choice of axes, it is
subsequently possible to compute a homogeneous transform
matrix to describe each relative roto-translation from one
joint to the next one. However, although these matrices have
an inverse, they cannot be transformed into a set of valid
DH parameters suitable for the reversed kinematic chain.
In the following, we propose a method to compute a DH-
compatible set of parameters.

Figure 4 depicts a comparison between the original DH
convention for the forward chain and the proposed approach
for its reversed version. Figure 4a illustrates the reference
frames’ attachment for a generic joint i belonging to a chain
pointing from left to right, whereas Figure 4b describes the
proposed solution for the reversed chain (traversed from right
to left). In order to reverse the chain, we changed the order
of the joints such that the end-effector of the original direct
chain becomes the origin of the new one. However, the
placement of the reference frames has been kept the same.
This requires a corresponding change of the parameters of

Oi−1

xi−1

yi−1

zi−1

Oi

xi

ziyi

di

θi

ai

αi

JOINT i− 1 JOINT i JOINT i+ 1

(a)

Oi

xi

yi
zi

Oi−1

xi−1

zi−1
yi−1

d̂i

θ̂i

âi

α̂i

JOINT i+ 1 JOINT i JOINT i− 1

(b)

Fig. 4: Comparison between the original DH convention
(a) and the proposed solution for the reversed chain
(b). In order to “reverse” the original kinematic chain, the
reference frames for the links have been kept coincident with
the original ones.

every joint. The new parameters, Φ̂i = {âi, d̂i, α̂i, θ̂i}, are
calculated as:

〈â0, â1, . . . , ân〉 = 〈−an,−an−1, . . . ,−a0〉〈
d̂0, d̂1, . . . , d̂n

〉
= 〈−dn,−dn−1, . . . ,−d0〉

〈α̂0, α̂1, . . . , α̂n〉 = 〈−αn,−αn−1, . . . ,−α0〉〈
θ̂0, θ̂1, . . . , θ̂n

〉
= 〈−θn,−θn−1, . . . ,−θ0〉

(1)

where Φi = {ai, di, αi, θi} is the original set of DH
parameters for the i-th link.

The standard transform matrix for the direct chain dDH

is shown below:

dDH =




cθ −sθcα sθsα acθ
sθ cθcα −cθsα asθ
0 sα cα d

0 0 0 1




Under the convention defined above, the transform matrix for
the reversed chain, rDH corresponds to the inverse of the
standard transform matrix (i.e. dDH−1), but with the new
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set of parameters Φ̂i. Substituting Φi with Φ̂i in dDH−1

thus gives the following form for rDH:

rDH =




c
θ̂

−s
θ̂

0 â

s
θ̂
cα̂ c

θ̂
cα̂ −sα̂ −d̂sα̂

s
θ̂
sα̂ c

θ̂
sα̂ cα̂ d̂cα̂

0 0 0 1




Under this approach, the parameters lose their physical
meaning (those related to lengths, such as âi and d̂i, become
negative), but the geometrical representation is correctly
preserved. In addition, the existing machinery for the kine-
matic computation (e.g. the differential kinematics) can be
maintained, because the Jacobians are still dependent on the
same parameter (i.e. θ̂i for revolute joints).

3) Solver: The task—in the formulation proposed
above—is an inverse kinematic task of a serial chain with a
floating base. Hence, we consider the problem of computing
the values of joint angles q∗ ∈ R

n such that the end-effector
reaches a given position xd ∈ R

6 (we are considering
the desired position and orientation as a single 6D vector,
rotations are described by the axis-angle representation). In
addition, q∗ has to satisfy a number of constraints, expressed
as a set of inequalities. Formally, the problem can be stated
as follows:

q∗ = arg min
q∈Rn

〈
nO, zEE

〉
=

= arg min
q∈Rn

{
‖nO‖ · ‖zEE‖ · cos(α)

}

s.t.

{
‖Kx(q)−O‖2 < ǫ

ql < q < qu

(2)

where O is the origin of the chain (i.e. [0 0 0]); nO is a unit
vector perpendicular to the first link of the kinematic chain
and originating in O; zEE is the z−axis of the end-effector,
as specified in Figure 3b; α is the angle between nO and
zEE; Kx is the forward kinematic function that represents the
position of the end-effector; ql and qu are vectors describing
the joints’ lower and upper limits. The optimization criterion
is thus the minimization of the scalar product between the
z−axis of the end-effector and a vector nO normal to the
surface to be touched. Since both vectors are of unit length,
the optimization boils down to the minimization of cos(α),
that is the normal of the target and the z−axis of the end-
effector pointing in exactly opposite directions (where α = π

and cos(α) = −1).
Further, the solution to problem (1) has to satisfy a set

of additional constraints: in particular, we require that the
end-effector’s position is coincident with the origin of the
kinematic chain (up to a certain tolerance ǫ), and that the
solution lies between a set of lower and upper bounds
(ql,qu ∈ R

n) of physically admissible values for the joints.
This description of the problem entails that the final position
and joint limits are always satisfied (being a constrained
optimization problem) whereas the orientation of the end-
effector may have a residual error (the minimum cost may
not be zero).

Kinematically, the task can by explained as a reaching
problem (the end-effector reaches the origin) with orientation
normal to the surface of the touched point. The particular
formulation of the problem (namely, a serial chain with
a floating base) implies that both arms are automatically
controlled in order to solve the task. Since the iCub arms
are redundant, the solver has a certain freedom to impose
the final configuration while satisfying the joint limit or
collision constraints. Nonetheless, the solution we proposed
has dramatically increased the redundancy of the task: the
adoption of a single serial chain that spans from the point
to be touched up to the contralateral end-effector has further
increased the number of degrees of freedom available1.

In order to solve the problem described by Equation 2,
an interior point optimization technique is used, in particular
we employ IpOpt [20], a public domain software package
designed for large-scale nonlinear optimization problems.

4) Controller: The motor control has been achieved by
means of a simple position control in most of the joints.
Two of them (namely, the shoulder yaw and the elbow of
the left arm) have been controlled in impedance mode, in
order to ensure more compliance and thus intrinsic safety
during contact.

C. Data collection and optimization

1) Experimental protocol: The experimental protocol is
schematically illustrated in Fig. 2. The experimenter touches
the robot on the left forearm. This is detected by the robot
and the position of the active taxel (in fact the average
position of all the taxels that are stimulated) is recorded to
be used later by the solver. The arms start moving toward
the self-touch configuration. If this is successfully achieved,
the contact is detected by the robot (on the left forearm and
on the tip of the right index finger). The coordinates of this
point (relying on the skin calibration) are recorded together
with the current joint configuration, and constitute one data
point that is later used for subsequent optimization of the
kinematic model. Due to inaccuracies in the initial model,
not all attempts result in a final self-touch configuration—
these trials are ignored. In total, 100 successful data points
were collected in this way. Then, in order to speed up data
collection (only the final configuration is important for the
calibration), further 200 points were collected by setting the
joints to idle and generating the self-touch configurations by
the experimenters.

2) Problem formulation: Referring to [2], a kinematic
calibration has to optimize the parameter vector Φi =
ai, di, αi, oi with i ∈ [1, n], a, d, α the first three parameters
of the DH formulation [19], and o representing the offset
that specifies the positioning of the encoders on the joints
with respect to the DH representation. Thus, o is part of the
model that should be subject to calibration and is therefore
also included in the optimization (like in [2]).

1 In our concrete case, where the point to be touched is located on the
robot’s left forearm, 12 DoF are used—5 on the manipulator that is touched,
7 in the contralateral one.
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In the experimental setup presented here, the kinematic
chain consists of 12 DoF. With 4 parameters per joint, the
number of parameters to be optimized is thus 48 (see Table
I, first column). A schematic illustration of this is depicted
in Fig. 5a. The kinematic chain is closed through two fixed
transformations at its ends (skin – white in the figure; index
finger – green in the figure). These transform matrices are
kept constant and their parameters are not optimized.

(a)

(b)

Fig. 5: Optimization of the kinematic chain. The chain is
closed on one end through the skin (a fixed transformation
from the taxel to the wrist) and through the index finger
on the other end (another fixed transformation from the
contralateral hand to the fingertip). (a) Schematic illustration
of the framework. (b) Initial vs. optimized kinematic chain.
The initial parameters (CAD values) shown in blue, the
optimized in green.

The parameter calibration is obtained by using the same
non linear optimizer described earlier (IpOpt [20]). The cost
is set in order to minimize the total position error:

Φ∗ = argmin
Φ

M∑

m=1

‖ps − pe(Φ, θm)‖ (3)

where θm are the joint angles of the m-th sample as read
from the joint encoders (for a total of M = 300 samples),
pe is the estimated position (as function of the joint angles

and the current parameter values) and ps is the position of
the end-effector as measured from the skin.

III. EXPERIMENTAL RESULTS

Using the data set collected according to the procedure
described in the previous section, we conducted three opti-
mization experiments.

A. Experiment 1 - Optimization of parameters from CAD
model

In this experiment, the initial values of the DH parameters
are those from the CAD model. Assuming that the skin
calibration is correct, these parameters can be used by the
optimizer with the aim of minimizing the error of the forward
kinematic function w.r.t. the position of the taxels. The result
is shown in Fig. 5b. The values after optimization can be
seen in the “Optimized (Exp 1)” column of Table I. The
measure of performance is the error on the end-effector
position—Euclidean distance of the predicted position of the
end-effector to the taxel position from the skin calibration—
as shown in the first row of Table II. As expected, here the
improvement is small owing to the accurate initial estimate
of the DH parameters derived from the CAD models.

TABLE II: Error at the end-effector

Initial (m) Optimized (m)
Exp 1 0.0226 0.0208

Exp 2 (10% noise) 0.0819± 0.0299 0.0377± 0.0139

Exp 3 (30% noise) 0.1919± 0.0301 0.0664± 0.0175

B. Experiments 2 and 3 - Optimization with 10 and 30%
noise on initial values

The initial parameter values in “Experiment 1” are nat-
urally already reasonable guesses of the real parameters.
In order to further test our proposed method, we have
conducted additional experiments with more noisy estimates
of the initial parameters. Therefore, we perturbed the CAD
parameters as follows:

Φn

i = p ∗ uniform[−1; 1] ∗Φi +Φi

p = [0.1, 0.3]
(4)

where Φn
i

is the new set of perturbed parameters, p is the
amount of noise with a uniform distribution (effectively 10%
or 30% of the parameter value), and Φi is the original set
of parameters. The noise is thus proportional to the initial
value of every DH parameter (angle or length), with a special
consequence that parameters with an initial value of zero are
not perturbed. All parameters—including the ones with zero
values—are then subject to optimization.

Five different initial configurations were generated and the
optimizer run using the same data set (300 data points). The
results can be seen in Table I and Table II. In the 10% noise
case, the reduction of error is substantial (54% on average
- Table II) in all the tests that have been run. In Exp. 3,
with 30% noise on the DH parameters, qualitatively similar
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conclusions can be drawn: the error on the task is reduced
65% on average after optimization.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new method for robotic self-
calibration that does not rely on any external measurement
apparatus or on constraints arising from specific contact with
the environment. Furthermore, no sensing at a distance (vi-
sion, laser) is needed. Instead, taking inspiration from early
infant development and exploiting the artificial skin on the
iCub robot, we exploited the correspondences between the
tactile and proprioceptive modality—in our case tactile inputs
and joint angle values—to calibrate the parameters of a kine-
matic chain. The data sets were collected using a novel self-
touch behavior that is generated autonomously by the robot:
the inverse kinematic solver was relying on an advantageous
reformulation of the reaching problem for the two arms of
the iCub into a single floating-base kinematic chain. Then,
optimization of the DH parameters was performed through
minimization of the distance between positions predicted
by forward kinematics and known positions of the taxels
on the robotic skin. An improvement over the CAD values
was achieved. Furthermore, configurations with 10 and 30%
noise on the initial DH parameters were also subject to
optimization and resulted in an average improvement of 54
and 65% respectively.

As part of our future work we will investigate a variation
on the self-touch scenario where the robot will keep a contact
configuration for an extended period of time while varying
the joint configurations. The utility of data sets originating
from this “closed-loop” strategy will be compared with the
data set used in this initial work. Furthermore, several addi-
tional sources of inaccuracy were not considered here. These
include the skin calibration, the kinematics of the hand (from
wrist to fingertip), or the precision of the joint measurements.
These could be subject to optimization in the future as well.
At the same time, while self-touch theoretically provides
the means to come close to perfect accuracy when reaching
for one’s own body, in the future, we want to investigate
extrapolation of the calibration to the whole operational
space. Finally, additional loops can be closed by adding the
visual modality. Using stereo vision and adding the head and
eye kinematics while keeping the same methodology—that
is the point where “double touch” occurs can be observed—
will allow for calibration of all the remaining components,
including camera projective maps. A theoretical analysis of
the observability and identifiability with respect to the con-
tributions of different data collection methods and individual
sensory modalities will be performed.

In our view, this work is not only relevant as a part of a
new, compact self-calibration tool for robots with sensorized
skin, but paves the way for robots to enter new application
domains. Robots capable of reaching with any body part
and also able to detect and locate contact on any body part
can be said to posses whole-body awareness, making them
intrinsically safe not only for themselves (as demonstrated
here), but also for their environment, possibly a humanly

populated one. This is certainly one of the overarching goals
and future measure of success of humanoid robotics.
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TABLE I: DH Parameters and optimization

Label CAD model Optimized (Exp 1) Optimized ±σ (Exp 2 – 10% noise) Optimized ±σ (Exp 2 – 30% noise)
a1 0 0 0± 0 0± 0

d1 −0.1373 −0.1373 −0.1343± 0.0097 −0.1477± 0.0206

α1 −1.5708 −1.5968 −1.6292± 0.0787 −1.7148± 0.1119

o1 1.5708 1.5887 1.5770± 0.1134 1.8133± 0.2217

a2 0.0150 0.0126 0.0129± 0.0027 0.0051± 0.0073

d2 0 −0.0026 −0.0020± 0.0028 −0.0074± 0.0083

α2 −1.5708 −1.6014 −1.5165± 0.0703 −1.5658± 0.3268

o2 0 −0.0040 −0.0013± 0.0572 0.0194± 0.1127

a3 −0.0150 −0.0179 −0.0166± 0.0029 −0.0236± 0.0086

d3 −0.1523 −0.1604 −0.1560± 0.0050 −0.1963± 0.0187

α3 1.5708 1.5887 1.5848± 0.0526 1.6144± 0.2614

o3 −1.3090 −1.3360 −1.3508± 0.0511 −1.3663± 0.4323

a4 0 −0.0064 −0.0029± 0.0029 −0.0195± 0.0164

d4 0 −0.0060 −0.0029± 0.0029 −0.0190± 0.0168

α4 −1.5708 −1.5487 −1.5295± 0.0496 −1.4276± 0.3057

o4 1.5708 1.5841 1.5163± 0.1037 1.5072± 0.2475

a5 0 0.0216 −0.0029± 0.0029 −0.0162± 0.0232

d5 −0.1077 −0.1153 −0.1099± 0.0042 −0.1175± 0.0187

α5 1.5708 1.5841 1.5660± 0.1299 1.7101± 0.3909

o5 −1.5708 −1.6014 −1.5712± 0.0439 −1.7181± 0.3643

a6 0 −0.0060 −0.0029± 0.0029 −0.0217± 0.0194

d6 −0.1077 −0.1119 −0.1123± 0.0072 −0.1222± 0.0288

α6 1.5708 1.5839 1.5609± 0.0982 1.5766± 0.1594

o6 −1.5708 −1.6024 −1.6297± 0.0964 −1.6054± 0.2078

a7 0 −0.0069 −0.0041± 0.0052 0.0166± 0.0479

d7 0 −0.0030 −0.0029± 0.0029 −0.0155± 0.0203

α7 −1.5708 −1.5963 −1.5644± 0.0352 −1.5986± 0.2675

o7 −1.5708 −1.5963 −1.5716± 0.0841 −1.6173± 0.3691

a8 −0.0150 −0.0171 −0.0172± 0.0029 −0.0170± 0.0150

d8 −0.1523 −0.1605 −0.1541± 0.0077 −0.1176± 0.0496

α8 −1.5708 −1.5831 −1.5748± 0.1046 −1.6635± 0.2511

o8 −1.8326 −1.8618 −1.8268± 0.1184 −1.8297± 0.2338

a9 0.0150 0.0133 0.0129± 0.0030 0.0012± 0.0296

d9 0 −0.0026 −0.0028± 0.0028 −0.0080± 0.0080

α9 1.5708 1.5891 1.5990± 0.1019 1.5853± 0.2720

o9 0 −0.0040 0.0011± 0.0565 0.0095± 0.0985

a10 0 −0.0019 −0.0025± 0.0037 −0.0050± 0.0144

d10 −0.1373 −0.1411 −0.1410± 0.0093 −0.1279± 0.0395

α10 1.5708 1.5915 1.6521± 0.0582 1.6108± 0.2230

o10 −1.5708 −1.5937 −1.6092± 0.1299 −1.6252± 0.3956

a11 0 0.0008 −0.0028± 0.0028 −0.0045± 0.0148

d11 0 −0.0011 −0.0029± 0.0029 −0.0046± 0.0147

α11 1.5708 1.5918 1.6273± 0.1152 1.5263± 0.2460

o11 1.5708 1.5915 1.6771± 0.0766 1.5118± 0.3519

a12 0.0625 0.0623 0.0579± 0.0038 0.0528± 0.0099

d12 0.0160 0.0151 0.0136± 0.0026 0.0102± 0.0142

α12 0 −0.0012 −0.0102± 0.0838 −0.0244± 0.1054

o12 3.1416 3.1842 3.1370± 0.1743 3.0448± 0.4766
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