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Abstract—For a complex autonomous robotic system such as
a humanoid robot, motor-babbling-based sensorimotor learning
is considered an effective method to develop an internal model
of the self-body and the environment autonomously. In this
paper, we propose a method of sensorimotor learning and
evaluate it performance in active learning. The proposed model
is characterized by a function we call the “ confidence”, and
is a measure of the reliability of state prediction and control.
The confidence for the state can be a good measure to bias
the next exploration strategy of data sampling, and to direct its
attention to areas in the state domain less reliably predicted and
controlled. We consider the confidence function to be a first step
toward an active behavior design for autonomous environment
adaptation. The approach was experimentally validated using
the humanoid robot James.

Index Terms—sensorimotor learning, neural networks, state
prediction, humanoid robot, confidence

I. INTRODUCTION

Learning in robotics is one practical solution allowing an

autonomous robot to perceive its body and the environment.

As discussed in the context of the frame problem [1], the

robot’s body and the environment are generally too complex

to be modeled. Even if the kinematics and the dynamics

of the body are known, a real sensory input to the body

often differs from one derived from a theoretical model,

because sensor input is always influenced by interaction with

the environment. For instance, when we grasp an object,

the physical parameters of our arm, such as its mass and

momentum, differs from the nominal state depending on

the grasped object. Moreover, it is difficult to evaluate all

potential variations in advance, since real data can vary

quite a lot and the behavior of the external environment is

not necessarily controlled by the robot. On the other hand,

learning approaches provide a data-driven solution: the robot

explores the environment and extracts knowledge to build an

internal model of the body and the environment.

Learning-based motor control systems are well studied

in the literature [2][3][4][5][6][7]. Haruno et al. proposed

a modular control approach [3], which couples a forward
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model (state predictor) and an inverse model (controller).

The forward model predicts the next state from the current

state and a motor command (an efference copy), while

the inverse model generates a motor command from the

current state and the predicted state. Even if a proper motor

command is unknown, the feedback error learning procedure

(FEL) provides a suitable approximation [4]. The prediction

error contributes to gate learning of the forward and inverse

models, and to weight output of the inverse models for the

final motor command. Motor prediction, based on a copy of

the motor command, compensates for delays and noise in

the sensorimotor system. Moreover, motor prediction allows

differentiating self-generated movements from externally im-

posed forces/disturbances [5][6].

Learning-based perception is applicable not only for motor

control but also to model the environment using multi-

ple sensorial modalities, such as vision, audition, touch,

force/torque, and acceleration sensing. In our earlier ap-

proach, we developed a learning system aimed at predicting

future sensor data based on current sensor data and motor

commands [8]. In the study we explored the possibilities for

the robot to detect changes in its body or the environment

in an autonomous manner: no other information, such as a

kinematic model, was given to the system. Following this

concept, we investigated a function called confidence, focused

on sensory prediction learning [9]. The function of confidence

is to quantify inequalities between the predicted state and the

real state of the body and the environment.

One of the significant problems in learning is that learning

domain is too large to be completely covered, as mentioned at

the beginning of this article with frame problem. An efficient

learning strategy is necessary to enhance learning speed while

keeping its quality high. A random sampling strategy is often

considered to be the most robust approach for unknown

learning domain. However, the effect of learning is biased

by various factors and constraints in the learning domain. In

the literature of sensory-motor learning, conventional motor

babbling generates random motor commands in joint space to

collect learning data in task space, while the data sampling is

biased by nonlinear mapping from joint space to task space.

We propose an improvement of the learning strategy:

active motor babbling based on confidence for the state.
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notation variable
s measured sensory input
ŝ estimated sensory input

δ̂s estimated sensory input change
s∗ desired sensory input
δs∗ desired sensory input change
u actuated motor command
û estimated motor command
u∗ desired motor command
Φ(·) state prediction function
Ψ(·) state control function
χ(·) state design function

Φ̂(·) approximated state prediction function

Ψ̂(·) approximated state control function

TABLE I
VARIABLE AND FUNCTION NOTATION.

This approach is an extension of [9] to deal with both the

problems of state prediction and state control. That is, the

current learning evaluation on state prediction and control is

applied to the next exploration strategy for data sampling by

using acquired state control skills. The exploration strategy

focuses data sampling on insufficient parts of learning.

This paper is organized as follows: Section II describes the

proposed framework of sensory-motor learning including an

introduction of the confidence function. Section III describes

the experimental results obtained using the humanoid robotic

platform James [10]. Finally, Section IV gives the conclusion

and outlines some future tasks.

II. METHOD

A. Sensorimotor learning

Fig. 1 illustrates the internal state space of a sensorimotor

system. variable notation used in this figure is defined in

Table I. Let s[t] ∈ RNs denote the sensory input vector from

the Ns sensors, and u[t] ∈ RNm be the motor command

vector for the Nm motors at time t. Here, we assume the

sensory input vector as the state vector, and discuss the state

space formed by the set of all state vectors. The state is

changed by the motor command actuation. Let us assume

that the dynamics of s[t] and u[t] can be defined as:

s[t + δt] = s[t] + δs[t], (1)

δs[t] = Φ(s[t], u[t]), (2)

u[t] = Ψ(s[t], δs[t]). (3)

Here, for simplicity, we assume that δt is sufficiently small

that a motor command to change the state from s[t] to s[t+
δt] is unique. In this manner we can model state transitions

without considering the problem of kinematic redundancy in

the local domain.

The goal of learning is to approximate Φ(·) and Ψ(·) using

data samples acquired through exploration. Let δ̂s[t] and û[t]
denote estimated vectors of the sensory input change δs[t]
and that of the actuated motor command u[t], respectively.

Fig. 1. State transition diagram of the proposed sensorimotor system.

Φ̂(·) and Ψ̂(·) denote the approximations of Φ(·) and Ψ(·),
defined as:

δ̂s[t] := Φ̂(s[t], u∗[t]), (4)

û[t] := Ψ̂(s[t], δ̂s[t]), (5)

where the estimated state change δ̂s[t] is used as an input

for the estimation of state control. u∗[tk] is applied to robot

as u[tk] = u∗[tk]. The functions Φ̂(·) and Ψ̂(·) represent

internal sensorimotor dynamics, which can be exploited for

state prediction and state control, as shown in the Fig. 2.
In order to collect learning data for these function approx-

imations, the robot must move its body. At the beginning

of the learning process, however, the robot does not know

how to control its joint movement. Motor babbling gives

us a simple solution to this problem: the learning system

randomly generates a motor command u∗[tk], which is an

output of the state design function illustrated as χ(·) in the

Fig. 2a. The robot then actuates this motor command as

u[tk] = u∗[tk], leading to random joint movement. During

motor babbling, the learning system stores measured data:

{s[tk], u[tk], δs[tk]}k=1,···,K at each time step: tk. Let us

refer to the above process as the U-space motor command

generation (Fig.2a). In learning of the functions Φ̂(·) and

Ψ̂(·), s[tk], u[tk], and δs[tk] can be used as input vectors of

s[t], u[t], and δs[t], respectively, while δs[tk] and u[tk] can

be used as target vectors of δ̂s[t] and û[t], respectively.
If the learning process is complete, the robot will be able

to generate a motor command to reach a desired next state

s∗[t], defined as:

δ̂s[t] = Φ̂(s[t], û[t]), (6)

û[t] = Ψ̂(s[t], δs∗[t]), (7)

where the estimated motor command: û[t] is used for actua-

tion of the robot joints as u[t] = û[t]. This is represented in

Fig. 2b. The relations between the current and next state are

ŝ[t+δt] = s[t]+δ̂s[t] and s∗[t+δt] = s[t]+δs∗[t]. By using

the approximated functions, the robot is able to generate a

motor command to collect interesting learning samples in

state space. Let us refer to the above process as the S-space
motor command generation (Fig. 2b).
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Learning System
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(a) U-space motor generation

(b) S-space motor generation
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Fig. 2. A comparison between passive motor command generation (a) and
active motor command generation (b).

B. Confidence for a state

Learning results can be evaluated in terms of the con-
fidence for a state. The confidence is based on the state

prediction error es and motor control error eu defined as

es[t] = |δ̂s[t]− δs[t]|, (8)

eu[t] = |û[t]− u[t]|, (9)

when u[t] (= u∗[t]) is given by U-space motor command

generation. If the motor command is given by S-space motor

command generation, Eqn.(9) cannot be used, since the

equation û[t] = u[t] is always true, leading to permanent

zero control error. In this case, we use the following error

vector instead of eu[t],

ep[t] = |δs∗[t]− δs[t]|, (10)

which gives the error between the measured state and desired

state by motor control, meaning the performance error of the

state control in the S-space.

Let us introduce the Gaussian filtering of es, eu ∈ (0,+∞)
as a finite scalar variable c[t] ∈ [0, 1] such as

c[t] = exp
(
−es[t]2

2σ2

)
· exp

(
−eu[t]2

2σ2

)
, (11)

where the constant σ2 determines filtering sensitivity (Fig.3).

Accumulation of c[t] depends on the state s[t], and provides

robust memory of confidence for the state s[t] on prediction

and control. Let Cs ∈ [0, 1] denote the confidence, working

as a temporal moving average of normalized learning error

c[t]. The update rule of the confidence for s at time t is

defined as:

Cs[t] := (1− α)Cs[t− δt] + αc[t], (12)
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Fig. 3. Temporal confidence vs error. The horizontal coordinates of the
intersections between the line c = exp(−1/2) and Gaussian curves for
several values of σ, which adjusts filtering sensitivity.

where the constant parameter: α ∈ [0, 1] denotes an update

weight. Cs[0] is initialized as zero at the beginning of

the learning process. A high value of Cs indicates that

knowledge of state dynamics at the state s is reliable.

C. Learning strategy

The sensorimotor learning procedure is divided into two

stages: exploration and learning, as illustrated in Fig.??. In

the exploration stage, the robot generates joints movements

(motor babbling) in order to collect learning samples, and

evaluates mapping functions optimized in previous learning
stages. In the learning stage, the robot optimizes the mapping

functions off-line with the collected learning samples in the

previous exploration stages. Motor behavior of the robot in

the exploration stage is generated in U-space or S-space. If

the confidence for the current state at time t is lower than

a constant threshold β, described as Cs[t] < β, a motor

command is randomly generated in U-space. Otherwise,

the minimum-confidence state among current eight-neighbor

states is given to the robot as the next desired state, and the

motor command is generated by the function Ψ(·).
The principal idea of this framework is to exploit con-

fidence derived from past learning experience, and then

focus subsequent exploration to collect new learning data

of interest. Here, we are focusing on increasing learning

efficiency. However, we could give other learning strategies

to exploit the advantages of active exploration and learning.

For instance, if the confidence is high enough, the robot can

direct its action by using acquired motor skills toward the

state which attracts its attention.

D. Implementation by neural networks

The functions Φ̂(·) and Ψ̂(·) were approximated using

Multi Layer Perceptron (MLP) as shown in Fig.5 [8][11].

MLPs are universal function approximators, whose param-

eters can be optimized by learning. In our system, we

implemented the learning strategy using a three layer MLP

and conventional gradient descent. [11].
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Exploration

(On Line)
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(Off Line)

Fig. 4. The proposed learning strategy. A robot explores the environment
to collect learning data, and evaluates sensorimotor functions on-line. After
exploration, the robot optimizes sensorimotor functions with the collected
learning samples off-line. These two processes are repeated alternatingly
until the desired performance is reached.

Fig. 5. The Multi Layer Perceptron (MLP) used for approximation of the
state prediction function Φ(·) and state control function Ψ(·).

Let ni and nh denote the numbers of the elements in the

first and second layer, respectively. The output function used

in the MLP is defined as follows:

yk(x) =
nh∑
j=1

wo
jk · f(

ni∑
i=1

wh
ijxj + wh

0j) + wo
0k, (13)

where yk(·) represents the k-th component of the function

y(·), and x denotes a combined vector of inputs. For instance,

xT = (sT , uT ) for Φ̂(·), and xT = (sT , vdsT ) for Ψ̂(·). wh

denotes the weight coefficients connecting the first layer to

the second, and wo connecting the second layer to the third.

wh
0j and wo

0k are bias coefficients. As shown in Fig.5, the

activation function f(·) of the elements in the second layer

is a differentiable non-linear function, while the activation

function of the elements in the first layer and the third is the

identity function. We adopted the hyperbolic tangent function

f(·) in the second layer as follows:

f(v) = tanh(
v

τ
), (14)

where τ is a constant value that adjusts nonlinearity and v is

the weighted sum of the inputs into the elements.

The parameters of the function wh
ij and wo

jk are modified

for each input x[t] to minimize the error es[t]2 and eu[t]2

as defined by Eqn. (8) and (9), using the gradient descent

method as follows:

Δwh
ij [t] = −η

∂

∂wh
ij

e[t]2, Δwo
jk[t] = −η

∂

∂wo
jk

e[t]2, (15)

where the constant: η denotes a learning rate.

TABLE II
SENSORY STATE AND MOTOR COMMAND.

sensory state motor command
s[t] = (s1[t], s2[t]) u[t] = (u1[t], u2[t])

s1: horizontal position u1: upper-arm roll
s2: vertical position u2: shoulder pitch

III. EXPERIMENT

A. Experimental setting

We performed experiments on sensorimotor learning using

the humanoid robot James (Fig.6)[10]. James is a fixed upper-

body robotic platform dedicated to vision-based manipulation

studies. It is composed of a 7DOF arm with a dexterous

9DOF hand and a 7DOF head as shown in Fig.6. It is

equipped with binocular vision, force/torque sensors, tactile

sensors, inertial sensors and motor encoders. Low-level sen-

sorimotor information is processed in local control cards,

and high-level sensorimotor information is handled in local

networks with arbitrary numbers of servers and PCs [12].

The sensory state vector and the motor command vector

used in the experiment are presented in Table.II. In this

experiment we selected the position in the image of the object

of interest, a two dimensional quantity, as the sensory state

vector. A sample image obtained from the left eye camera as

shown in Fig. 6.

We selected the velocity command for the upper-arm and

shoulder joint as the motor command vector. Joint actuation

affects the visual position of the object of interest. During

exploration, motors were driven stepwise in the following

manner: the velocity command was sent to each joint during

the first half of the temporal interval δt, and was set to

zero during the second half of the interval. We selected

a small green marker mounted on the James left arm as

the object of interest. The object was detected based on its

distinctive color. The color format of the obtained image was

transformed from the RGB format to the YUV format to

extract the hue robustly. The green regions on the image

were then filtered in the YUV domain. The mass centers

of the extracted regions were used as the position of the

object of interest. Color parameters used to detect green

markers were determined experimentally. The color-based

region detection was enough robust against external visual

noise such as lighting changes and passing people in the

visual field. Through the whole experiment, the position of

James’ head and the eye camera were fixed for simplicity.

The sensorimotor system learns only the effects of self-

generated arm movements. Therefore, the state prediction

and control system are dependent on the orientation of the

head.[9]

Experimental parameters are presented in Table III, where

E [epoch] denotes the epoch number of the exploration

and learning cycle. K and L [ts] (time steps) denote the

number of data sampling events and learning events in
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u1
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Fig. 6. The humanoid robot James was used for experimental validation of
the proposed active sensorimotor learning. Arm position is sensed visually
using a green marker mounted on the hand.

TABLE III
EXPERIMENTAL PARAMETERS.

Parameter Value Definition
E 20 [epoch]∗ exploration-learnig cycle
K 30 [ts]∗∗ exploration iteration
L 10,000 [ts] learning iteration
δt 2.0 [s] time step interval

ni 4 MLP units (1st layer)

nh 100 MLP units (2nd layer)
no 2 MLP units (3rd layer)
η 0.05 MLP learning rate
τ 1.0 MLP parameter

Dw [−1.0, +1.0] MLP initial weight domain
Du [−0.5, +0.5] motor command domain
G 10.0 motor input gain
α 0.1 confidence gain

∗epoch: iterated number of the exploration and learning cycle.
∗∗ts: descrete time steps.

each epoch, respectively. The trajectories of the arm were

generated randomly in each epoch. All of input and target

values for the MLP were normalized in order to better

utilize the nonlinearity in the activation function. The initial

weight coefficients were randomly selected from the finite

domain Dw. The number of hidden elements of the MLP nh

was selected carefully to adjust the function approximating

performance of the MLP, to avoid under-fitting or over-fitting

problem. Values of the motor commands ui[t] (i = 1, 2) were

randomly selected in domain Du, proportionally amplified by

the gain G, and sent to the motors.

B. Results

We performed both active and passive sensorimotor learn-

ing for comparison. Active learning refers to the active

motor babbling in S-Space and U-Space with confidence-

based switching. Passive learning refers to the passive motor

babbling only in U-Space. Fig.7 shows the temporal evolution

of state space confidence. In each confidence map, the state

space is quantized as 8x8 pixel regions. Light intensity in

each region indicates the local confidence value. Each column

Fig. 7. Temporal evolution of state space confidence. Light intensity indi-
cates the local confidence value. From left to right, the columns correspond
to the confidence maps of state prediction in active learning, state control
in active learning, state prediction in passive learning, and state control
in passive learning, respectively. From top to bottom, the row shows the
confidence maps obtained at the end of the 0th, 5th, 10th, 15th, and 20th
epoch, respectively.
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Fig. 8. The number of times that S-Space motor command generation was
used in each epoch.

of Fig.7 contains confidence maps obtained in the same ex-

perimental setting. From left to right, the columns correspond

to the confidence maps of state prediction in active learning,

state control in active learning, state prediction in passive

learning, and state control in passive learning, respectively.

From top to bottom, each row of the Fig.7 shows confidence

maps obtained at the end of the 0th, 5th, 10th, 15th, and 20th

epochs. The figure shows that the high-confidence domain

in active learning spreads faster than in the case of passive

learning, since the exploration by active learning focuses on

less well learned states by referring to the confidence value.

The active learning strategy avoids learning duplication in

the states where learning is complete.

Fig.8 shows the number of times that the S-Space was used

for motor command generation. For the first several epochs,

the U-Space was mainly selected, since not enough had been

learned to explore the state actively. However, after the 10th

epoch, the S-Space was mainly selected, since the confidence

value reached a sufficient threshold at many state regions.

Fig.9 and Fig.10 show the experimental performance of
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Fig. 9. Three different trials of state prediction. The blue cross indicates
the predicted next state.

Fig. 10. Two different trials of state control for reaching. The blue cross
indicates the target for the state control.

state prediction and state control in the physical space. The

results suggest the state prediction and state control worked

successfully.

IV. CONCLUSION

Based on a sensorimotor prediction algorithm previously

implemented [8], we defined a novel function called the

confidence function, which works as a memory of reliability

for state prediction and control. The aim of this function is

to store information about prediction and control reliability

for learning, and exploit it for subsequent data sampling.

If the robot is sure of its perception and motor behavior,

the robot can choose to explore weakly understood areas of

interest. This can be used to compensate for reinforcement

of important motion primitives. The notion of robotic confi-
dence was developed as a first step towards automatically

understanding a robot’s self and surrounding environment

constructively. The approach was discussed theoretically in

this paper, and validated in some experiments with a hu-

manoid robot. Although in this experiment the simple case

of prediction and control using visual sensing and arm

movements was examined, the proposed methodology is not

limited to specific modalities and is open for any control

approach.

Our global aim is to implement learning as a natural

adaptation and self-improvement process for the robot. Ac-

cordingly, we must deal with high-dimensional mechanisms

to show that our algorithm remains accurate when dealing

with complementary sensor data, redundant kinematics, and

dynamics. We are now applying the proposed method to the

general body recognition. If the robot finds an object which is

predictable and controllable, it would be acceptable that robot

regards this object as a part of its body. We hope that this

direction will lead us to embody a robot’s self-consciousness
using self-generated movements.
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