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.Abstract – A fundamental aspect of mobiligence, 
intended as the intelligence for generating adaptive 
motor function, is the ability to coordinate/synchronize 
the two arms in the same task or to allow the two arms 
to carry out independent tasks at the same time. The 
presentation surveys activities going on at the Italian 
Institute of Technology (dept. of robotics, brain and 
cognitive sciences) on such topics, based on the 53 
degrees of freedom iCub platform, for humanoid 
robotics, and on the 12 degrees of freedom bimanual 
haptic manipulandum BdF, for the study of 
neuromotor control in humans. The two lines of 
research share, among other things, a focus on coupled 
forward/inverse internal models for control. 
 

I.  INTRODUCTION 

Unlike the range of direct problems common in 
conventional physics, which require to compute the effects 
of forces on objects, brains have to deal with the inverse 
problems of determining the motor commands that would 
permit the intended, goal-directed mechanical interaction 
with the world. Strikingly, many of the inverse problems 
faced by the brain to control movements are indeed similar 
to the ones roboticists must solve to make their robots 
move intelligently and act flexibly in the world. Hence, 
while the field of neuroscience benefits from the theories 
of construction and control of man-made bodies, 
roboticists have the profound  parallel opportunity to learn 
about the structural and functional organization of the 
central nervous system. However, the explosive 
computational complexity of kinematic and dynamic 
equations of even deceptively simple devices and tasks 
make it difficult either to intuitively understand the neural 
control of movements or develop computational schemes 
for dextrous control of artificial manipulators and 
humanoids.  
How do humans decide what to do with their extra joints, 
and how should humanoid robots control all their joints in 
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order to generate coordinated movement patterns? 
Moreover, is the selection/coordination of redundant DoFs  
independent of the spatio-temporal organization of the 
reaching movements? Early studies of human arm 
trajectory formation [1,2] showed invariant spatio-
temporal features, such as a symmetric bell-shaped speed 
profile, which can be explained in terms of minimization 
of some measure of smoothness, such as jerk [3] or torque-
change [4]. Later studies emphasized the importance of 
physical or computational force fields in the neural control 
of movement or motor learning [5-7]. 
 

 
Figure 1. Hierarchical organization of motor control. 

 
Most approaches to motion planning in robotics were 
derived from the development of RMRC (Resolved 
Motion Rate Control) [8], which is based on the real-time 
inversion of the Jacobian matrix of the kinematic 
transformation, i.e. the function that links  the variation of 
the joint angle vector dq  to the pose dx  of the end-
effector.  Clearly, for redundant kinematic chains RMRC 
must be modified by using one form or another of pseudo-
inversion, as the Moore-Penrose matrix that provides a 
minimum norm solution for dq  or other more general 
pseudo-inversion methods [9] that can be associated with 
an arbitrary cost function for the inversion calculation. 
Another method (Extended Jacobian Method: [10,11]) 
extends the usual Jacobian matrix with additional rows that 
take into account virtual movements in the null space of 
the kinematic transformation. In any case, the classical 
approaches to robot planning/control work well only inside 



the workspace and far away from kinematic singularities. 
If this is acceptable for an industrial robot, which has no or 
a limited number of  excess DoFs  and operates in a well 
defined and predictable environment, it is not feasible for a 
humanoid robot supposed to carry out, as humans, 
activities of daily life in a  generally unknown 
environment. 
A method of motion planning that can be applied both to 
humanoid robots and the neural control of movements is 
based on an artificial potential field approach (Passive 
Motion Paradigm: [5]) combined with terminal-attractor 
dynamics [12] that has also been applied to robot 
reasoning using virtual mental simulations of action [13]. 
This method, which is further analysed in the following 
sections in relation with bimanual coordination, takes into 
account the computational scheme of fig. 1 and focuses on 
the two higher modules. 

 
Figure 2. Computational metaphor of the PMP. 

 

II.  THE PASSIVE MOTION PARADIGM 

In this paper, we explore a force-field based computational 
scheme that organizes the massive computational load of 
task planning into a simple network of loosely coupled 
work units, operating in a local distributed fashion and 
simultaneously capable of dealing with heterogeneous 
optimality criteria. The computational process of 
relaxation is similar to coordinating the movements of a 
marionette by means of attached strings (fig. 2): the strings 
in the computational model are the virtual force fields 
generated by the intended/attended goal and the other task 
dependent combinations of constraints involved in the 
execution of the task. The computational mechanism 
involves a process of passive simulation of movement as if 
it was imposed by an external agent and distribution of this 
imposed motion on the remaining proximal elements 
(joints, muscles etc) so as to pull the dynamical system to a 
new equilibrium.  All elements in the computational chain 
(tool space, end effector space, joint space, muscular 

space) locally compute their own reaction to the imposed 
external motion based on their local virtual impedance, the 
overall configuration attained by the relaxation globally 
minimizing the elastic potential energy of the system.  
No matrix inversion is necessary and the computational 
mechanism does not crash near kinematic singularities or 
when the robot is asked to achieve a final pose that is 
outside its intrinsic workspace: what happens, in this case, 
is the gentle degradation of performance that characterizes 
humans in the same situations. Moreover, the remaining 
error at equilibrium is a valuable information for triggering 
a higher level of reasoning, such as searching for an 
alternative plan like making/using an environmental object 
as tool. The control of the timing of the relaxation process 
using the notion of terminal attractor dynamics further 
endows the generated trajectory with human-like 
smoothness and includes the capability to deal complex 
tasks like bimanual coordination, interference avoidance 
and precise control of the reaching time. 

 
Figure 3. Basic computational scheme of the  PMP for a simple 
kinematic chain. 

 

Let x  be the vector that identifies the pose of the end-
effector of a kinematic chain (e.g. a human or robotic arm) 
in the extrinsic workspace and q  the vector that identifies 
the configuration of the robot in the intrinsic joint space: 

)(qfx =  is the kinematic transformation that can be 
expressed, for each time instant, as follows: 
           qqJx && ⋅= )(  (1) 

where )(qJ  is the Jacobian matrix of the transformation. 
The motor planner/controller, which expresses in 
computational terns the PMP, is defined by the following 
steps, which are graphically summarized in fig. 3: 
1) Associate to the designated target Tx  a conservative,  

attractive  force field in the extrinsic space 

      )( xxKF Text −=  (2) 

 where extK  is the virtual impedance matrix in the 
extrinsic space. The intensity of this force decreases 
monotonically as the end-effector approaches the 
target. 

2) Map the force field into an equivalent torque field in 
the intrinsic space, according to the principle of virtual 
works:  

      FJT T=  (3) 



 Also the intensity of this torque vector decreases as 
the end-effector approaches the target. 

3) Relax the arm configuration in the applied field:  

      TAq ⋅= int&  (4) 

where  intA  is the virtual admittance matrix  in the 
intrinsic space: its modulation does not affect the 
trajectory of the end-effector but modifies the relative 
contributions of the different joints to the reaching 
movement. 

4) Map the arm movement into the extrinsic workspace, 
by using eq. 1. By integrating this equation over time 
we obtain a trajectory in the extrinsic space, whose 
final position corresponds to an equilibrium 
configuration Fx .  

By definition, the trajectory of the end-effector is the 
unique flowline in the force field passing through )( 0tx  
and converging to Fx . The algorithm always converges to 
a “reasonable” equilibrium state, whatever the degree of 
redundancy of the robot: if the target is within the 
workspace of the robot, it is reached; if it is not reachable, 
the robot settles on the point of the boundary of the 
workspace that is at a minimum distance from the target. 
The force field described by equation 2 can be isotropic or 
anisotropic as a function of the matrix stiffness extK  and, 
accordingly, the flowlines can e either straight or curved. 
On the other hand, the joint admittance matrix intA  
determines the degree of involvement of each DoF in a 
given reaching movement.  
 

 
 

Figure 4. The iCub humanoid robot (53 DoFs). 
 

For example, a joint rotation can be “frozen” by setting to 
zero the corresponding admittance value. Both matrices 

can be modulated, thus allowing to exploit redundancy in a 
goal-oriented way. The scheme of fig. 3 also includes three 
additional elements: 1) a force field in the intrinsic space 
for implementing internal constraints (e.g. obstacle 
avoidance), 2) a force field in the extrinsic space for  
implementing external constraints (e.g. range-of-motion 
limits of the joints), 3) a time varying gain −Γ− )(t  or time 
base generator for implementing terminal attractor 
dynamics, i.e. a relaxation mechanism for reaching an 
equilibrium state in a controllable time [12]. 
In contrast with monolithic optimal control based 
approaches [14], the relaxation process associated with the 
PMP computational model does not look for optimal 
activation patterns based on a particular control law but 
rather focuses on a divide and rule strategy: it addresses 
the dynamic formation of motor synergies so as to 
simultaneously incorporate multiple task-dependent 
constraints, on one hand, and destroys as many degrees of 
freedom (DoF) as possible (in the Bernsteinian sense), on 
the other hand. The same process can coordinate the 
movements of a limb,  network of limbs and/or networks 
of external objects kinematically and dynamically coupled 
to the body/internal body model. 
 

III. BIMANUAL COORDINATION IN HUMANOID ROBOTS 

Humanoid robots have a large number of “extra” joints, 
organized in a humanlike fashion with several kinematic 
chains. Consider, for example, Cog [15] with 21 DoFs, DB 
[16] with 30 DoFs, Asimo [17] with 34 DoFs, H7 [18] 
with 35 DoFs, and iCub [19] with 53 DoFs. How to 
coordinate so many DoFs in a principled manner is still an 
open question. The PMP is a general approach to shape 
such complexity according to a uniform computational 
structure that can be applied to the actual execution of 
coordinated movements or mental simulations that can 
support sensorimotor reasoning. Here we focus our 
attention on iCub (fig. 4). The iCub is a small humanoid 
robot of the dimensions of a three and half year old child 
and designed by the RobotCub consortium, a joint 
collaborative effort of 11 teams from Europe, 3 teams from 
Japan and 2 teams from USA. 

  
Figure 5. iCub reaches bimanually an object beyond arm’s length. 
 
The PMP described in the previous section was integrated 
with the middle ware of iCub software architecture, which 
is based on YARP [20], an open-source framework that 
supports distributed computation with a specific impetus 
given to robot control and efficiency.  
 



Fig. 5 shows an exmple of bimnual reaching and grasping 
an object that is beyond arm’s reach. The PMP network is 
composed of two copies of the model of fig. 3, connected 
to the PMP net of the trunk. Two force fields are used, one 
is applied to the right hand and the other to the left hand. 
These force fields are propagated to the overall network 
thus recruiting the appropriate motion of the trunk. Two 
additional elements are used in the composite network: a 
summing and an assignment node that allow the dynamic 
interaction among the different sub-networks. 
 

  

  
Figure 7.  a: initial position; b: end of the reaching phase; c: end 
of the grasping phase; d: end of the lifting phase. 
 

In order to carry out bimanual coordinated movements, 
such as the apparently simple task of reaching, grasping, 
and lifting an object, we need to consider a dynamically 

reconfigured PMP network that includes different sub-
networks: one for the right arm, one for the left arm,  one 
for the trunk, and one for the cube. This network is shown 
in fig. 6 as regards the final lifting phase: a single force 
field, applied to the grasped object, propagates throughout 
the global network, recruiting the joints with appropriate 
timing. 
Figure7 shows four snapshots of the composite bimanual 
task that includes a reaching phase, a grasping phase, and a 
lifting phase.  The smooth coordination of the different 
kinematic variables is shown in figure 8. 
 
 

 

 
Figure 8. Time course of kinematic variables in the final lifting 
phase of the task, determined by the PMP network of fig. 6. 



 
It is necessary to emphasize that the force fields operating 
on the PMP networks don’t really describe the 
biomechanical forces at play during the execution of 
movements, but are computational metaphors that describe 
the complex dynamics of the internal computational 
engine. The internal model associated with the force-fields 
stores a whole family of geometrically possible solutions 
as a sort of holographic memory, from which one solution 
is implicitly selected on the basis of the specific context in 
which a given task is executed. 
Further, the proposed architecture is also endowed with 
nice computational properties like robustness, run-time 
optimization, fast task-adaptation, interference avoidance 
and local to global computation that makes it both 
biologically plausible and extremely useful in the control 
of complex robotic bodies. 
 

IV.  BIMANUAL COORDINATION  IN HUMANS AND FORCE 
FIELD ADAPTATION  

Complex bimanual coordination patterns escape our 
conscious perception, although can adapt easily to a 
changing environment, as in opening a jar or steering a car 
while changing gear. As a matter of fact, such skills 
exemplify two general classes of bimanual coordination: 1) 
direct or unitary bimanual coordination, which is driven by 
a single motor task and occurs in the same workspace, with 
a common timing; 2) indirect bimanual coordination, 
which is characterised by two independent motor tasks, 
one for each hand, occurring in different parts of the space 
and with different timing. In the latter case, we can still 
speak of coordination but it occurs at a more abstract level, 
remote with respect to dynamic and muscular patterns. In 
both cases, however, it is of great  importance to 
investigate the interaction between coordination and 
learning. 
Experiments of indirect bimanual coordination were 
performed by Tcheang et al. [21]. They used a pair of 
haptic robots that generated viscous curl fields, a de facto 
standard benchmark for the study of motor adaptation in 
the uni-manual case, after the seminal paper by Shadmehr 
and Mussa-Ivaldi [7]. For both arms the task was out-and-
back reaching movements from a home position to one of 
eight targets, uniformly positioned on a circle with a 10 cm 
diameter, without stopping at the peripheral targets. The 
two circular workspaces were well separated sideways and 
the peripheral targets were selected randomly and 
independently for each hand. Thus the experimental design 
challenged the ability of the subjects to learn two 
independent tasks. The main result of that study was that 
indeed simultaneous dynamics are learned without 
interference. 
In a recent study [22] Casadio et al. addressed a paradigm 
of direct bimanual coordination. The experimental set-up is 
similar but the task is different: 1) the two circular 
workspaces coincide, 2) only one target is activated at any 
time, 3) both hands are required to reach it at the same 
time and stop there for a suitable time. So, the 

experimental design stresses the ability to carry out the 
same unitary task (same space, same time) while adapting 
to viscous curl force fields that can be characterised by 
equal or opposite rotation.  In contrast with the bimanual 
indirect coordination paradigm described above, the direct 
coordination paradigm aims at achieving a unitary spatio-
temporal synergy between the two arms, which is indeed 
complex if we look beyond the apparent simplicity: the 
workspace is globally the same both in extrinsic and 
intrinsic coordinates but the combined reaching 
movements are characterized by strongly different joint 
rotation and muscle activation patterns, except for the 
forward/backward movements. Therefore, it is of interest 
to evaluate the robustness of the synergy on face of the 
adaptation task. 
The experimental setup consisted of two haptic BdF robots 
[23], mounted as shown in fig. 9. The positions of the two 
robots were calibrated with respect to a common reference 
frame that was also used for the targets of the reaching 
movements. Subjects were seated on a chair, with their 
trunk and wrist restrained by means of suitable holders 
while grasping the handles of the two manipulanda, in such 
a way to limit the arm movements to shoulder and elbow 
rotations. The screen was positioned right in front of the 
patients, about 1m away in order to display the current 
positions of the two hands and the target, with a 1:1 visual 
scale factor:  targets were displayed as round green circles 
(2 cm diameter) and the position of right and left hand 
were displayed as a yellow and a red circle (0.4 cm 
diameter) respectively.  In the experiments 8 targets were 
used, positioned on a circle with a 10 cm diameter, plus a 
home target in the center of the circle.  
 

 
Figure 9. Bimanual haptic BdF robot. 

 
The sequence of target presentations alternated the central 
target and one of 8 peripheral targets, selected in random 
order. A target set included 48 center-out movements (6 
reaching movements for each peripheral target) and 48 
homing movements. Only the center-out movements were 
analysed. The task was to reach the targets at the same 
time with both hands, while adapting to two force fields 
simultaneously applied to the two hands; the subjects were 
encouraged to keep approximately constant the reaching 
time (600 ±100 ms), by means of acoustic and visual 
feedbacks that were coded in such a way to inform the 



subject whether the reaching time was too short, correct, or 
too long. The two force fields were both viscous curl and 
could have equal or opposite rotation directions (CW-CW 
or CCW-CW) with a viscous coefficient of 20 N/m/s.  The 
well-known force field adaptation paradigm proposed by 
Shadmehr and Mussa-Ivaldi [7] was used and, in 
particular, the experimental protocol was organized into 
the following phases:  
(i) Familiarization (4 target sets), in which the robot 

generated no force. The purpose of this phase was to 
evaluate the background level of performance; 

(ii) Adaptation (6 target sets), in which the force field 
was turned on (it included random catch trials);  

(iii) Wash-out (2 target sets), in which forces were turned 
off to evaluate the persistence of the induced 
adaptation (if any). 

The experimental subjects (young, healthy, right-handed) 
were divided into  two age-matched and gender-balanced 
groups:  

− Group 1: 3 males and 4 females (age: 25.7±1.8y); 
− Group 2: 4 males and 3 females (age: 25.3±2.6y). 

The two groups differed for the combination of force fields 
used in the adaptation phase: 
 

Subjects L-hand R-hand 
Group1 CW CW 
Group2 CCW CW 
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Figure 10. Force field adaptation profile for the left hand (left 
panel) and the right hand (right panel). N: null field trials; F: field 
trials. Positive aiming direction denotes counter-clockwise 
deviation. Dotted lines indicate catch trials, solid lines indicate 
force field trials. The values are averages over the 8 directions. 
CW-CW group (black lines); CCW-CW group (grey line). 
 

Force field adaptation 
 

In order to evaluate the force field adaptation, we 
evaluated  for both hands the aiming error, defined as the 
angle between the ideal reaching trajectory and the line 
joining the starting point to the point of the real trajectory 
at which  speed is maximum. This error, which is an 
overall measure of lateral deviation of the trajectory, was 
evaluated for the field and the catch trials, respectively.  

Fig. 10 shows the evolution of this error in the two groups 
and the two hands. 
Adaptation to the force field is evident for both groups of 
subjects and both hands, as demonstrated by the opposite 
patterns of lateral deviation displayed by the catch (black 
lines) and the force field trials (grey lines). Moreover, the 
catch trial trajectories are curved in  the opposite direction 
with respect to the field trials. The statistical analysis 
shows that during the adaptation phase the aiming error 
decreases (significant TIME effect, F(1,12)=37.18, 
p=0.00054) and there is no significant TIME×GROUP 
interaction. Thus it is possible to conclude that the two 
hands can independently adapt to two curl force fields 
(either different or the same). 
 

Bimanual Coordination 
 

The second relevant aspect that was worth investigating in 
the bimanual adaptation task is the evolution of the 
coordination patterns. The task assigned to the subjects 
was to keep the two hands aligned in time and space 
during the adaptation process. The two force fields have an 
effect as regards the spatial alignment but not the time 
alignment. For this reason we analysed the time course of 
the absolute values of the orthogonal (top) and tangential 
(bottom) components of inter-hand displacement (fig. 11).  
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Figure 11. Absolute values of the orthogonal (top panel) and 
tangential (bottom panel) components of the distance between the 
hands, averaged over all movement directions. CW-CW group 
(black lines); CCW-CW group (grey line). Thin lines: standard 
error around the mean. 
 

During the null field phase, the tangential and orthogonal 
components have similar magnitudes. In observing the 
force field  and the wash-out  phases, we need to 
distinguish the CW-CW and CCW-CW groups. As could 



be expected from the nature of the paradigm, the force-
field perturbation had little effect on both components of 
the inter-hand distance for the CW-CW group; on the 
contrary the effect was sizable for the orthogonal 
component in  the CCW-CW groups and then decreased as 
adaptation proceeded. In general, these results suggest that 
the force field is perceived as a novel condition, which 
challenges bi-manual coordination. We then focused our 
attention on the tangential component of the distance.  
Fig. 5 suggests that the force field has little or no 
influence; however, the influence could be masked by the 
fact that the figure displays the averages over the different 
directions of the tangential component. For this reason, we 
also analysed the signed tangential component and the 
dependence upon movement direction. Fig. 12 displays the 
direction-dependent polar plot of this parameter. The circle 
corresponds to zero value of the parameter (i.e., right and 
left hands move synchronously); values inside/outside the 
circle indicate that the left hand is leading/lagging the right 
hand.   

 

 
Figure 12. Direction dependence of the tangential displacement 
between the two hands during the familiarization phase (top 
panel) and adaptation phase (bottom panel). Thin and thick lines 
denote early and late phases. Black and grey traces indicate, 
respectively, the CW-CW and the CCW-CW groups. The circle 
(radius = 1.5cm) indicates zero displacement. Points outside the 
circle denote positive displacement (i.e. the right hand leads). 
 

During the null field phase, the figure shows  that the left 
hand  tends to lead the bi-manual movement: the effect is 
slightly direction-dependent and is the same for both 
groups.  
On the contrary, during the force field adaptation phase the 
two groups differ in a significant way: 1) the two hand are 

approximately synchronous in the 90° and 270° directions 
for both groups of subjects; 2) the left hand leads the right 
hand for movement in all other directions (CW-CW group); 
3) the left hand leads the right hand for movements in the 
leftward directions while the right hand leads in the 
rightward directions (CCW-CW group). The statistical 
analysis for the final target-set of the adaptation phase 
confirms a significant difference between the two groups 
(F(1,10)=5.48; p=0.041). In conclusion,  these preliminary 
results suggest that when considering bimanual tasks, the 
adaptation to novel dynamical environments is only part of 
the story and subtle coordination effects must be taken into 
account, with regards to the specific features of the task, 
hand dominance and workspace position. 
In the near future this study, that involved only 4 DoFs 
(shoulder+elbow for both arms) will be extended by 
integrating the movements of both wrists and hands, for a 
total of 12 compliant DoFs. 

V. CONCLUSIONS 

In spite of many open question, we believe that the 
interaction between the study of bimanual coordination in 
humans and humanoid robots is a fruitful one.  
At a higher, more cognitive level, we may consider the 
possible role of handedness for a humanoid robot. For a 
composite, bimanual PMP network, like the one of fig. 6, 
the issue is related to the representation of space. The 
assumption for the current computational model is to have 
a uniform representation (and a uniform level of 
resolution) for all the relevant variables (e.g. cubexxx ,, 21  
in fig. 6). However, this is not necessarily the case: 
resolution and representation may be function of practice 
and thus handedness might emerge from actual 
“experience” and “training” of the robot in the real world. 
At a lower computational level, we should consider (as 
suggested in fig. 1) the interaction between the levels 
related to spatio-temporal planning and the levels related to 
dynamics and muscles: internal model control 
(feedforward and/or feedback) vs. muscle impedance 
control. As a matter of fact, PMP networks provide 
different interaction points with the lower (and higher) 
control levels, where modulation can occur in a bi-
directional way. For example, spatial stiffness matrices can 
be modulated as a function of the task “commitment” to a  
specific  reaching trajectory; joint admittance matrices can 
be chosen in such a way to influence the pattern of 
“recruitment” of the different joints; the time base 
generator can be tuned in relation with the performance of 
the previous trial, and so on. 
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