
 
 

    
    Abstract— The subjective ease with which we move gracefully 
in constraint filled uncertain environments often masks the 
enormously complex integrative apparatus needed to spell 
synergy among the thousands of sensors, joints, musculo-skeletal 
units and neuronal populations that contribute to any act's 
planning and execution. In this paper, we apply the 
computational framework of passive motion paradigm (PMP, 
Mussa Ivaldi et al, 1988) for task specific composition and 
coordination of the movements of a limb, network of limbs (e.g. 
left arm–waist–right arm) or networks of external objects 
coupled to the body of the 53 degrees of freedom humanoid robot 
‘iCub’. The basic PMP model is further extended by formulation 
of a pair of branching nodes that allow compositionality and 
transfer of force fields from one relaxation network to another. 
The generality of the proposed approach is further illustrated 
using a simulation of a whole body reaching (WBR) tasks from a 
quiet standing posture that recruits virtually all the joints of the 
upper limbs, lower limbs, and trunk, binding together a large 
number of degrees of freedom into a functional unit that 
combines a focal task (reaching a target with the hand) and a 
postural task (keeping the projection of the center of mass within 
the bipedal support area). Preliminary comparisons of the 
solutions generated by the computational model with the 
movements of a human subject performing similar WBR task is 
presented. 
 

I. INTRODUCTION 
HE action of “reaching” is fundamental for any kind of 
goal directed interaction between the body and the world. 
Considering the fact that motor commands needed to 

perform even seemingly simple actions like reaching a cup of 
coffee also requires spatiotemporal coordination of several 
variables both internal and external to the body like the 
current state of the arm, orientation of the body, range of 
motion for the joints, range of torques for the actuators, 
geometry of the task (shape of the cup) etc, robotitians have 
often wondered about the nature of the computational/neural 
 
 
 
 
 
 
 
 
 

substrate in the brain that makes “reaching” possible in 
humans and animals.  
   However, the explosive computational complexity of 
kinematic and dynamic equations of even deceptively simple 
devices like a robotic arm makes it difficult either to 
intuitively understand the neural control of movements or 
develop computational schemes for dexterous control of 
artificial manipulators and humanoids. How do humans decide 
what to do with their extra joints, and how should humanoid 
robots control all their joints in order to generate coordinated 
movement patterns? Moreover, is the selection/coordination 
of redundant DoFs independent of the spatio-temporal 
organization of the reaching movements? Early studies of 
human arm trajectory formation [1]-[2] showed invariant 
spatiotemporal features, such as a symmetric bell-shaped 
speed 
profile, which can be explained in terms of minimization of 
some measure of smoothness, such as jerk [3] or torque 
change 
[4]. Later studies emphasized the importance of physical or 
computational force fields in the neural control of movement 
or motor learning [5]-[7].  
    The Passive Motion Paradigm (or PMP: Mussa Ivaldi et al, 
1988) extended and investigated in this paper is a force fields 
based computational model that addresses the problem of 
coordinating redundant degrees of freedom by means of a 
dynamical system approach, similar to the Vector Integration 
to To Endpoint (VITE model: Bullock and Grossberg, 1988). 
In both cases there is a “difference vector” associated with an 
attractor dynamics that has a point attractor in the designated 
target. The difference is that the VITE model focuses on the 
neural signals commanding a pair of agonist-antagonist 
muscles, whereas the PMP model focuses, at the same time, 
on the trajectories in the extrinsic and intrinsic spaces. The 
computational process of relaxation in the attractor landscape 
of the PMP is similar to coordinating the movements of a 
puppet by means of attached strings , the strings being virtual 
force fields generated by the intended/attended goal and the 
other task dependent combinations of constraints involved in 
the execution of the task. The computational mechanism in 
this sense involves a process of passive simulation of 
movement as if it was imposed by an external agent, in such a 
way to distribute the desired motion to the global kinematic 
structure by recruiting joints, actuators, and tools while 
pulling the dynamical system to the equilibrium state. What 
makes it attractive from the computational point of view is its 
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simplicity and robustness. It is simple because the 
planner/controller does not have to be concerned with all the 
DoFs at the same time but only with a smaller number of 
“end-effectors”. It is robust because no model inversion is 
necessary and the relaxation to equilibrium in a conservative 
force field can never crash. It does not require any cost 
function to be specified in order to solve the indeterminacy 
determined by the excess DoFs but it allows to integrate 
internal and external constraints (in the intrinsic and extrinsic 
spaces, respectively). The basic PMP model was further 
extended in order to include terminal attractor properties 
(Tsuji et al, 1995) and applied to robot reasoning using virtual 
mental simulation of action [10]. In comparison with a recent 
computational model for reaching by Hersch and Billard 
(2008) that builds upon the VITE model, the proposed 
extension of the PMP model in this chapter is equally well a 
“multi-referential dynamical systems” for implementing 
reaching movements in complex, cognitive robots but does 
not require any explicit inversion and/or optimisation 
procedure. 
        The proposed extension of the basic PMP model, prior to 
for applying it to the complex structure of a humanoid robot,  
includes two main features: 
− Terminal attractor dynamics, by means of a non-linear, 

dynamic timing mechanism, for allowing the 
synchronization of kinematic patterns in the extrinsic and 
intrinsic spaces; 

− Branching nodes, for structuring the PMP network in 
agreement with the body model and the kinematic 
constraints of a specific task. 

In this paper, a preliminary evaluation of the proposed 
approach has been carried out with the 53 degrees of freedom 
humanoid robot iCub, with particular reference to Reaching, 
orienting and whole upper body coordination (Right Arm-
Waist-Left arm chain). 
  We further demonstrate the generality and flexibility of the 
proposed approach by formulating a PMP based 
computational model for whole body reaching (WBR) task 
that recruits virtually all the joints of the upper limbs, lower 
limbs, and trunk, binding together a large number of degrees 
of freedom into a functional unit that combines a focal task 
(reaching a target with the hand) and a postural task (keeping 
the projection of the center of mass within the bipedal support 
area). The fact that the two tasks are part of the same 
functional unit is proved by the anticipatory postural 
adjustments (Bouisset & Zattara 1987 [12]) that have been 
described at the kinematic and electromyographic levels. 
Different approaches have been attempted to quantify the 
coupling among the joints, in order to identify sub-
components in the global reaching synergy: a typical example 
is the PCA analysis (Kaminski 2007 [13]). However, no 
generative computational model has been investigated so far. 
From the perspective of PMP, the focal and postural 
components of WBR can simply be associated to two different 
force fields and the complex, multi-joint coordinated patterns 
are a “side-effect” of the relaxation to equilibrium of the 
overall body model. Simulation results obtained using the 
model for whole body reaching tasks using a simplified body 

model composed of 5 joints (Ankle-Knee-Hip-Shoulder-
Elbow) are presented . We further compare the final solutions 
obtained (i.e  posture, velocity profile and trajectories in the 
distal/proximal spaces) using the proposed nonlinear 
dynamical system with the movements of a human subject 
performing similar WBR tasks. 
A simple learning mechanism for the optimal choice of the 
virtual impedance matrix to fit the solutions obtained by PMP 
to the human movements (measured through a motion capture 
device) is presented. 
  The article is organized as follows. The general formulation 
of the PMP is presented in the next section. Section 3 
describes the iCub centric adaptation of the computational 
model, mainly focusing on the issues of ‘compositionality’. 
Implementation results of few bimanual coordination tasks 
using the humanoid is presented. In section 4 we extend the 
basic computational model to the scenario of whole body 
reaching and present a  range of simulation results obtained 
using the model for whole body reaching tasks using a 
simplified body model composed of 5 joints (Ankle-Knee-
Hip-Shoulder-Elbow). We further compare the final solutions 
obtained (i.e  posture, velocity profile and trajectories in the 
distal/proximal spaces) using the proposed nonlinear 
dynamical system with the movements of a human subject 
performing similar WBR tasks. Concluding remarks are 
presented in the final section. 

II. THE PASSIVE MOTION PARADIGM 
  The central theme behind the formulation of PMP is that 
motor commands for any kind of motor action, for any 
configuration of limbs and for any degree of redundancy can 
be obtained by an “internal simulation” of a “passive motion” 
induced by a “virtual force field” (Mussa Ivaldi et al, 1988) 
applied to a small number of task-relevant parts of the body. 
Here “internal simulation” identifies the relaxation to 
equilibrium of an internal model of limb (arm, leg etc, 
according to the specific task); “passive motion” means that 
the joint rotation patterns are not specifically computed in 
order to accomplish a goal but are the indirect consequence of 
the interaction between the internal model of the limb and the 
force field generated by the target, i.e. the intended/attended 
goal. It is important to note that, the force fields we are 
considering don’t really describe the biomechanical forces at 
play during the execution of movements, but are just 
computational metaphors that describe the dynamics of the 
internal computational engine. 
   Let x be the vector that identifies the pose of the end-
effector of a robot in the extrinsic workspace and q the vector 
that identifies the configuration of the robot in the intrinsic 
joint space: x = k(q) is the kinematic transformation that can 
be expressed, for each time instant, as follows: 
where J(q) is the Jacobian matrix of the transformation. The 
motor planner/controller, which expresses in computational 
terms the PMP, is defined by the following steps that are also 
represented graphically by the PMP network of fig 1: 
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Fig 1. Basic computational scheme of the  PMP for a simple kinematic chain.   
x is the position/orientation of the end-effector, expressed in the extrinsic 
space; xT is the corresponding target; q is the vector of joint angles in the 
intrinsic space; J is the Jacobian matrix of the kinematic transformation           
x = k(q); Kext  is a virtual stiffness that determines the shape of the attractive 
force field to the target; “external constraints” are expressed as force fields in 
the extrinsic space (                               ); “internal constraints” are expressed 
as force fields in the intrinsic space (                      ); Aint  is a virtual 
admittance that distributes the relaxation motion to equilibrium to the different 
joints;       is the time-varying gain that implements the terminal attractor 
dynamics. 

1) Associate to the designated target xT an attractive  force 
field in the extrinsic space 

               )( xxKF Text −=                                      (1) 

 where Kext is the virtual impedance matrix in the extrinsic 
space. The intensity of this force decreases monotonically as 
the end-effector approaches the target. 
2) Map the force field into an equivalent torque field in the 
intrinsic space, according to the principle of virtual works:  

           FJT T=                                       (2) 

Also the intensity of this torque vector decreases as the end-
effector approaches the target. 
3) Relax the arm configuration in the applied field:  

          TAq ⋅= int&                                         (3) 

where Aint is the virtual admittance matrix  in the intrinsic 
space: the implicit or explicit modulation of this matrix affects 
the relative contributions of the different joints to the reaching 
movement. 
4) Map the arm movement into the extrinsic workspace:  

          qJx && ⋅=                                              (4) 

5) Integrate over time until equilibrium 
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The timing of the relaxation process can be controlled by 
using a TBG (Time Base Generator (Tsuji et al 2002) and the 
concept of terminal attractor dynamics (Zak 1991): this can be 
simply implemented by substituting the relaxation equation 
(4) with the following one:  

           TBtq ⋅⋅Γ= )(&  (6) 

where a possible form of the TBG or time-varying gain that 
implements the terminal attractor dynamics is the following 
one (it uses a minimum-jerk generator with duration τ ):  
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where 

           345 )/(10)/(15)/(6)( τττξ tttt +−=  (8) 

In general, a TBG can also be used as a computational tool 
for synchronizing two plans, coordinating two arms or even 
the movements of two robots. The algorithm always 
converges to an equilibrium state, in finite time (that is set 
using the TBG) under the following conditions: 
A.  When the end-effector reaches the target, thus reducing to        
0 the force field in the extrinsic space (1); 
B. When the force field in the intrinsic space becomes zero 
(2), although the force field in the extrinsic space is not null 
and this can happen in the neighbourhood of kinematic 
singularities; 
Case (A) is the condition of success termination. But also in 
case (B), in which the target cannot be reached for example 
because it is outside the workspace, the final configuration has 
a functional meaning for the motion planner because it 
encodes geometric information valuable for re-planning 
(breaking an action into a sequence of sub-actions like using a 
tool [10]). Thus, the basic PMP is a robust non-linear dynamic 
approach to the solution of the inverse kinematic problem that 
does not require any explicit inversion or optimization task. 

III. STRUCTURED PMP FOR UPPER BODY COORDINATION OF 
HUMANOID ICUB 

As evident in figure 1, every motor space in a PMP network 
is represented using a generalized force and position node 
grouped together as a work unit (that is a scalar invariant 
across the different motor spaces). The vertical weights that 
link force and displacement nodes and vice versa 
(incrementally) are represented by the impedance matrices. 
The horizontal weights on the other hand link two different 
motor spaces and are represented by the jacobians. To 
coordinate the body of a complex humanoid we need to 
augment the basic formulation of the PMP with a set of 
additional nodes that allow proper connectivity and transfer of 
force fields from one part of the body to other. We present the 
new additions using two examples of composite PMP 
networks 1) Coordination of reaching and orienting 2) 
Coordination of Left arm-waist-Right arm network is shown 
in figure 2 and 3 respectively. Since  there are many possible 
kinematic chains that can be coordinated simultaneously in the 
humanoid, it is necessary to identify the start and end points in 
the body model between which the force fields generated by 
the goal will propagate, and beyond which the force fields 
generated by the goal will not propagate. 
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The shoulder and waist are grounded in fig 2 and 3 
respectively,  hence all DoF in between the end effector and 

Fig 2. Composite PMP network with two attractive force fields applied to the  arm of iCub: a field  F1 that identifies the desired position of the 
hand/fingertip and a field F2 that helps achieving a desired pose of the hand via an attractor applied to the wrist. This network assumes that the 
shoulder of the arm is “grounded”: this means that the two force fields do not propagate beyond the shoulder joint. Four solutions generated by 
the computational model to reach the same target using the left arm, with different wrist orientations and starting from the same initial 
condition (left arm symmetric with respect to the right arm) is shown. 

Fig 3. Composite PMP network for Left arm-Waist-Right Arm coordination. Force fields (FF) 1&2 are applied on the left and the right 
arm to reach the goal, FF 3 &4 represent external constraints at the arm (like reaching with a specific wrist orientation like in figure 2), FF 
5&6 represent internal constraints (for example joint limits etc). The net dynamically composed attractor landscape that determines the 
behaviour of the robot is a superposition of all these fields. The waist joint of the robot is “grounded” in this case. The “sum node” allows 
the two force fields to be combined in determining the motion of the waist. The “assignment node” propagates to the two arms the motion 
of the waist. In this way the motion of each arm is influenced by both force fields. 



 
 

the designated ground node are involved in the relaxation 
process. Further, if the waist is very stiff (which can be 
controlled by modulating the ATrunk), only the DoF of the arms 
contribute to the final solution reached by the dynamical 
system: this is equivalent to “grounding”  both the shoulders. 
  Fig 3 shows the PMP computational chain to coordinate all 
degrees of freedom involved in the “right arm-waist-left arm 
chain” during the bimanual reaching task. Since the left and 
the right arm are act  in parallel, it is easy to hint that for the 
case of bimanual reaching there will be two parallel 
computational chains (each similar to the one shown in figure 
2) with respective end-effectors being pulled by the goal 
induced force field. The problem now is to the couple these 
two dynamical systems into a single relaxation process. We 
also observe that the waist of the robot is linked serially to the 
two arms and we need a way to couple the overall relaxation 
of the two arms with the relaxation at the waist. In other 
words, the three degrees of freedom allowed at the waist must 
also contribute towards reaching the respective targets of the 
two arms (each having 7DoF). In order to achieve this, we 
introduce two new nodes (in addition to generalised 
displacement, force and ground nodes that already exist) in the 
computational framework : a sum node and an assignment 
node. The resulting computational chain for upper body 
coordination is shown in fig 3. In complex kinematic 
structures, characterized by several serial and parallel 
connections, the sum and assignment nodes can be used to add 
or assign displacements and forces to different connecting 
elements of the kinematic chain (in this case the left arm-
waist-right arm network). Atrunk is the virtual admittance 
matrix  of the waist. The transpose jacobians incrementally 
transform the force fields generated by the goal in each chain 
into ten virtual torques (7 for the respective arms and 3 for the 
waist). The virtual torques incrementally computed for the 
waist as a result of the force fields experienced by the two 
arms are summed at the sum node and transformed into 3 
incremental joint rotations at the waist through the admittance 
matrix. The assignment node propagates the resultant 
incremental displacement computed at the waist back to the 
computational chain of the two arms. At the same time the 
incremental displacements at the joints of the each arm is also 
computed by using the 7 virtual joint torques and joint 
admittance matrices. The jacobians now compute the 
incremental update in the configuration of the body as a result 
of the incremental displacements at different joints. In this one 
cycle through the computational chain, the whole upper body 
has incrementally reconfigured to a new pose towards 
reaching the respective goals of the two end-effectors. Part of 
the solution contributed by the waist, part of it contributed by 
the degrees of freedom of the two arms, based on their relative 
admittances. This cycle of propagation of disturbances 
through the computational chain continues till the time the 
whole upper body attains equilibrium (i.e there are no 
disturbance forces circulating in the network). This is the final 
solution of the complete relaxation process. Three different 
bimanual reaching tasks coordinated using the computational 
model is shown in figure 3.The simulations were carried out 

by linking various PMP networks to the kinematic/dynamic 
simulator of the iCub robot (Tikhanoff et al 2008). 

IV. COORDINATION OF FOCAL ARM MOVEMENTS AND 
POSTURAL STABILIZATION IN WHOLE BODY REACHING 

After introducing the basic computational chain of the PMP 
in section II, in section III we presented two examples of 
composite PMP networks to coordinate the motion of the 
humanoid iCub. In this section we present a composite PMP 
chain that combines a focal task (reaching a target with the 
hand) and a postural task (keeping the projection of the center 
of mass within the bipedal support area) during a whole body 
reaching (WBR) task. Different approaches have been 
attempted to quantify the coupling among the joints during 
WBR, in order to identify sub-components in the global 
reaching synergy: a typical example is the PCA analysis [5]. 
However, no generative computational model has been 
investigated so far. In the context of the PMP, the focal and 
postural components of WBR can be associated to two force 
fields and the complex, multi-joint coordinated patterns are a 
“side-effect” of the relaxation to equilibrium of the overall 
body  model. Fig 4 shows the simplified five link body model 
considered in this study and fig 5 shows the flow digram of 
the PMP based computational model for WBR. 

 
 
 
 
 
 
 
 
 
 
 

Fig 4. WBR kinematic model consisting of a ‘ankle-knee-hip-shoulder-elbow’ 
chain, with B charecterizing the virtual admittance seen at the different joints.  

 
Fig 5. PMP based computational model for WBR. 

As shown in fig 5, the PMP based computational model for 
WBR can be defined by the combination of two synergies: a 
focal and a postural synergy. Focal synergy: xee (the position 



 
 

of the end-effector) must reach the target xT at a given time tf. 
Postural synergy: xcom (the position of the COM) must remain 
inside an admissible range of motion. Hence there are two 
force fields: a virtual attractive force field to a designated 
target (applied to the end-effector) and a repulsive force field 
(applied to the hip) to keep the COM in an admissible ROM 

)( eeTeeee xxKF −=  (9) 

),,( maxmin xxxfF comcom =  1(10) 

The jacobians map the extrinsic force fields into intrinsic 
force fields and the body configuration is relaxed in the 
applied (superimposed) fields according to (11), B being the 
virtual admittance matrix. 
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A way to explicitly control the time, without using a clock, is 
to insert in the non-linear dynamics of the PMP model a 
suitable time-varying gain )(tΓ that grows monotonically as x  
approaches the equilibrium state and diverges to an infinite 
value in that state (like (6)). The technique was originally 
proposed by Zak [11] for speeding up the access to content 
addressable memories and then was applied to a number of 
problems in neural networks. Systems that have terminal 
attractor dynamics violate the Lipschitz criteria of ordinary 
differential equations, i.e., they have point attractors of infinite 
stability in the sense that the gradient of their Lyapunov 
function diverges at equilibrium point: a consequence is that 
they reach equilibrium in finite time (it is a terminal attractor). 
Our purpose, however, is not merely to speed up the operation 
time of the planner but to allow a control of the reaching time 
as well as the speed profile in order to fit the human reaching 
patterns. This can be implemented by substituting the 
relaxation (11) with the following one: 
 

    
( )comcomeeee TBTBtq +Γ= )(&

                       (12) 
 
 We also point out that the admittance values in the 
computational chain are basically open parameters (positive 
definite) and there is no need to explicitly know or determine 
them. This is because the PMP essentially employs a 
relaxation paradigm in which displacements to a new planned 
position is obtained by a process that aims the disturbance 
force dF to a target point and keeps circulating in the chain till 
the time the target is reached [11] . This obviously implies that  
by pseudo randomly varying the admittance matrix a range of 
solutions can be generated of a given task, hence exploiting 
the inherent redundancy in the body model.  
  The PMP based computational model for WBR was 
implemented with respect to a simplified geometrical structure 
of the body with 5 joints (Ankle-Knee-Hip-Shoulder-Elbow). 
A range of reaching tasks mainly using the “Hip Strategy” or 
“knee freezing” and the “Ankle Strategy” or “normal 

reaching” were simulated using the computational model. In 
an extended study, the solutions obtained using the 
computational model were compared with movements of 
human subjects performing similar tasks measured by a motion 
capture device (MOCAP). 
  

 
Fig 6: Comparison of solution obtained using the PMP based 

computational model for whole body reaching, with data of 
movements of human subjects obtained using a  motion capture 
device. Panel A shows the range of solutions generated by the 
computational model through pseudorandom variations in the 
admittance matrix, for a knee freezed reaching task and a normal 
reaching task respectively. The solution (depicted in black) was the 
final posture of the human subject performing the WBR. Panel B 
shows the comparison between the solution generated by the 
computational model and that of the human subject. Panel C shows 
two additional examples, now of reaching far away targets using a 
knee freezed strategy and normal reaching strategy respectively. 
By pseudorandomly varying the admittance matrices in the 



 
 

computational model, the solutions (final posture and velocity 
profiles) generated by the computational model were fitted to 
the movements of a human subject. As evident from fig 6, 
preliminary results suggest close correlation between the 
solutions obtained using the computational model and the 
movements of human subjects performing similar tasks 
(measured through motion capture device).  

V. CONCLUDING REMARKS 
The action of “reaching” is fundamental for any kind of 

goal directed interaction between the body and the world. In 
this paper, we presented a simple, distributed computational 
framework for representing and solving a range of ill-posed 
coordination problems arising in redundant humanoid 
platforms, by using a multi-referential non-linear dynamical 
approach that exploits the physics of passive virtual motion. 
The computational process of relaxation in the attractor 
landscape is similar to coordinating the movements of a 
puppet by means of attached strings, the strings in our case 
being the virtual force fields generated by the 
intended/attended goal and the other task dependent 
combinations of constraints involved in the execution of the 
task. From this comes the nickname PMP (Passive Motion 
Paradigm) given to the model. The basic PMP scheme was 
further extended by formulation of a pair of branching nodes 
(sum, assignment and ground)  that allow compositionality 
and transfer of force fields from one relaxation network to 
another in a complex body. We demonstrated the performance 
of the computational model with two examples of composite 
PMP networks used to coordinate motion in the 53 degrees of 
freedom humanoid iCub. We further adapted the 
computational model for a closely related problem of 
coordinating motion in reaching tasks that recruit almost all 
limbs in the body and combines the focal and postural 
components involved in reaching into a single functional unit. 
The power of the approach comes from the generality of 
potential field based methods: the focal and postural 
components of WBR can be associated to two force fields and 
the complex, multi-joint coordinated patterns are a “side-
effect” of the relaxation to equilibrium of the overall internal 
model. Further, the timing of the relaxation can be controlled 
using a non-linear dynamical timing mechanism that provides 
terminal attractor  properties to the computational model and 
endows the generated trajectories with human-like smoothness 
and precise control of the reaching time. Preliminary results 
suggest close correlation between the solutions obtained using 
the computational model and the movements of human 
subjects performing similar tasks (measured through motion 
capture device). The process of pseudorandom variations in 
the admittance matrix to generate a solution that fits the 
movement of the human can be also be thought (speculatively) 
as a mechanism of imitation (the computational model trying 
to imitate the motion of the human) by autonomously 
changing its internal variables (impedances in the 
musculoskeletal system). Future developments will include 
the integration of this synergy formation mechanism with 

lower level, intermittent postural control [18] and formulation 
of a general learning mechanism for the optimal choice of the 
virtual admittance matrix that is at the heart of the 
coordination model.                   
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