Force control and reaching movements on the
ICub humanoid robot

Giorgio Metta and Lorenzo Natale and Francesco Nori and Giulio Sandini

Abstract This paper is about a layered controller for a complex humanoid robot:
namely, the iCub. We exploited a combination of precomputed models and machine
learning owing to the principle of balancing the design effort with the complexity
of data collection for learning. A ®rst layer uses the iCub sensors to implement
impedance control, on top of which we plan trajectories to reach for visually identi-
®ed targets while avoiding the most obvious joint limits or self collision of the robot
arm & body. Modeling errors or parameter misestimation are compensated by ma-
chine learning in order to obtain accurate pointing and reaching movement. Motion
segmentation is the main visual cue employed by the robot.

1 Introduction

In this paper we consider a solution to the problem of reaching for a visually identi-
®ed target in a complex humanoid robot platform, considering both potential force-
ful interactions with objects or people and gross mistakes due to miscalibration of
the controller parameters. Our reference platform is the iCub [1], @ humanoid robot

Giorgio Metta
Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Via Morego, 30 - Genoa,
Italy, e-mail: giorgio.metta@iit.it

Lorenzo Natale
Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Via Morego, 30 - Genoa,
Italy, e-mail: lorenzo.natale @iit.it

Francesco Nori
Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Via Morego, 30 - Genoa,
Italy, e-mail: francesco.nori@iit.it

Giulio Sandini
Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Via Morego, 30 - Genoa,
Italy, e-mail: giulio.sandini@iit.it

2 Giorgio Metta and Lorenzo Natale and Francesco Nori and Giulio Sandini

shaped as a three and half years old child. The iCub, by design, only uses 2passive®
sensors as for example cameras, gyroscopes, pressure, force and contact sensors,
microphones and so forth. We excluded the use of lasers, sonars and other esoteric
sensing modalities.

In this conditions and in an unstructured environment where human can freely
move and work (our laboratory space in the daily use of the iCub), it is unlikely that
the robot obtains an accurate model of the environment for accurate impact-free
planning of movements. One common solution [2] is to control the robot mechani-
cal impedance and, simultaneously, minimize impacts by using for example vision
and trajectory planning. The possibility of impedance control lowers the require-
ments of vision and guarantees a certain degree of safety in case of contacts with
the environment + though, strictly speaking, the robot can still be dangerous and
cause damage if it moves fast.

The control architecture described in this paper is not very different in princi-
ple from a standard computed torque approach [3]. A ®rst layer compensates for
the dynamics and linearizes the system. Because of the communication bus of the
iCub controllers, of bandwidth requirements, and implementation constraints, it op-
erates in joint space. A second layer subsequently plans trajectories starting from a
description of the target position in extrinsic space and merging joint limits, a sec-
ondary task speci®cation, inverse kinematics and singularity avoidance. We show in
the remainder of the paper how this is implemented by mixing hand-coded models
of the robot dynamics and kinematics together with machine learning.

Reaching and pointing is fundamental in learning about the environment enabling
interaction with objects and their manipulation to achieve complex tasks. In this
sense these are the basic building blocks of a complex cognitive architecture for the
iCub.

2 Experimental platform: the iCub

The iCub is one of the results of the RobotCub project, an EU-funded endeavor to
create a common platform for researchers interested in embodied arti®cial cognitive
systems [4].

The initial speci®cations of the robot aimed at replicating the size of a three years
old child. In particular, it was required that the robot be capable of crawling on all
fours and possess ®ne manipulation abilities. For a motivation of why these features
are important, the interested reader is referred to Metta et al. [5].

Dimensions, kinematic layout and ranges of movement were drafted by consid-
ering biomechanical models and anthropometric tables [6]. Rigid body simulations
were used to determine the crucial kinematic features in order to perform the set of
desired tasks and motions, i.e. reaching, crawling, etc. [7]. These simulations also
provided joint torques requirements. Data were then used as a baseline performance
indicator for the selection of the actuators. The ®nal kinematic structure of the robot
is shown in ®gure 1c. The iCub has 53 degrees of freedom (DoF). Its kinematics

Force control and reaching movements on the iCub humanoid robot 3

365

1046

(b) ©

Fig. 1 The iCub platform: panel (a) a picture of the latest realization of the iCub; panel (b) ap-
proximate dimensions height width; and panel (c) the kinematic structure of the major joints.

has several special features which are rarely found in other humanoid robots: e.g.
the waist has three DoF which considerably increase the robot's mobility; the three
DoF shoulder joint is constructed to have its axes of rotation always intersecting at
one point.

To match the torque requirements we employed rotary electric motors coupled
with speed reducers. We found this to be the most suitable choice in terms of ro-
bustness and reliability. Motor groups with various characteristics were developed
(e.g. 40Nm, 20Nm and 11Nm) for different placements into the iCub. We used
the Kollmorgen-DanaherMotion RBE type brushless frameless motor (BLM) and
a CSD frameless Harmonic Drive as speed reducer. The use of frameless compo-
nents allowed further optimization of space and reduced weight. Smaller motors for
moving the ®ngers, eyes and neck are from Fulhaber in various sizes and reduction
gear ratios.

Cable drives were used almost everywhere on the iCub. Most joints have relo-
cated motors as for example in the hand, shoulder (besides one joint), elbow, waist
and legs (apart from two joints). Cable drives are ef®cient and almost mandatory in
order to optimize the motor locations and the overall 2shape® of the robot. All joints
in the hand are cable driven. The hand of the iCub has 20 joints which are moved
by only 9 motors: this implies that some of the joints are under-actuated and their
movement is obtained by means of the cable couplings. Similarly to the human body
most of the hand actuation is in the forearm subsection. The head is another particu-
lar component of the iCub enabling independent vergence movements supported by
a three DoF neck for a total of six DoF.

By design we decided to only use @passive sensors® and in particular cameras,
microphones, gyroscopes and accelerometers, force/torque (FTS) and tactile sensors
as well as the traditional motor encoders. Of special relevance is the sensorized skin
which is not easily found in other platforms as well as the force/torque sensors that

4 Giorgio Metta and Lorenzo Natale and Francesco Nori and Giulio Sandini

are used for force/impedance control (see later). No active sensing is provided as for
example lasers, structured light projectors, and so forth.

The iCub mounts custom-designed electronics which consists of programmable
controller cards, ampli®ers, DACs and digital I/O cards. This ecosystem of micro-
controller cards relies on multiple CAN bus lines (up to 10) for communication and
synchronization and then connects with a cluster of external machines via a Gbit/s
Ethernet network. Data are acquired and synchronized (and timestamped) before
being made available on the network. We designed the software middleware that
supports data acquisition and control of the robot as well as all the ® mware that
operates on the microcontrollers which eventually drive each single transistor that
moves the motors.

The software middleware is called YARP [8]. YARP is a thin library that enables
multi-platform and multi-IDE development and collaboration by providing a layer
that shields the users from the quirks of the underlying operating system and robot
control. The complete design of the iCub (drawings, schematics, speci®cations) and
its software (both middleware and controllers) is distributed according to the GPL
or the LGPL licenses.

3 Dynamics

The ®rst layer of the proposed architecture is based on computation of the body
dynamics and implements joint position & velocity control on top of joint-level
impedance. In the simplest possible version, the controller cards implement a 1ms
feedback loop relying on the errede®ned as:

ext tyg; 1)

wheret is the vector of joint torques ang, its desired value. We do not know
directly on the iCub but we have access to estimates through the force/torque sensors
(FTSs). They are mounted as indicated in ®gure 2 in the upper part of the limbs and
can therefore be used to detect wrenches at any location in the iCub limbs and not
only at the end-effector as it is more typical for industrial manipulators.

We show that can be estimated from the FTS measurements of each given limb
(equations repeat identical on each limb). Let's indicate wittthe wrench mea-
sured by the FTS and assume that it is due to an actual external wrench at a known
location (e.g. at the end-effector) which we oall. We can estimates by propa-
gating the measurement on the kinematic chain of the limb (changing coordinates):

. I 0 _

with [Ad the skew-symmetric matrix representing the cross product with the vector
RAe W the estimate ofve, andw; the internal wrench (due to internal forces and
moments). Note thgdd is a function ofg, the vector of joint anglesy; can be

Force control and reaching movements on the iCub humanoid robot 5

(b)

Fig. 2 In (a) a typical interaction of the iCub arm with the environment exempli®ed here with a
number of wrenches at different locations and in (b) the location of the four FTSs of the iCub in
the upper part of the limbs (proximal with respect to the reference frame of the robot kinematic
chains) and of the inertial sensors mounted in the head.

-‘ ------------ ?

| R +

7 _..] Whole Body [srr
Torques |<-------- ;

N

User

ROBOT wo, Wo, Po ;

Fig. 3 The torque controller of the iCub. See text for details.

estimated from the dynamics of the limb (either with the Lagrange or Newton-Euler
formulation). To estimatée we only need to projeat/.Ao0 the joint torques using
the transposed Jacobian, i.e.:

R=J7(q) 3
We can then use this estimate in a control loop by de®ning the torquee@sor
e=t tg; (4)
whereth is an estimate of regulated by a PID controller of the form:
VA

6 Giorgio Metta and Lorenzo Natale and Francesco Nori and Giulio Sandini

wherekp, kg andk; are the usual PID gains andthe ampli®er output (the PWM
duty cycle which determines the equivalent applied voltage at the motor). Similarly
we can build an impedance controller in joint space by makjpgf the form:

tg=K (Q dgo)+D (€ &), (6)

which can be implemented at the controller card levé&l &ndD are diagonal ma-
trices. Furthermore, we can command velocity by making:

Qu(t) = qa(t dt)+ da(t)dt ; ()

with dt the control cycle interval (1ms in our case). This latter modality is useful
when generating whole trajectories incrementally. The actual computation of the
dynamics and kinematics is based on a graph representation which we detail in the
following.

We start by considering an open (single or multiple branches) kinematic chain
with n DoF composed afi+ 1 links. Adopting the Denavit-Hartenberg notation [3],
we de®ne a set of reference franiBs, hli, :::, hni, attached at each link. The
it link of the chain is described by a vertex (sometimes called node), usually
represented by the sym . A hinge joint between the linkand the linkj (i.e. a

rotational joint) is represented by an oriented eggeconnectingy; with v;: @ !

. Inan DoF open chain, each vertex (except for the initial and termigandv,
respectively) has two edges. Therefore, the graph representation of the n-link chain
is an oriented sequence of nodgsconnected by edges 1. The orientation of the
edges can be either chosen arbitrarily (it will be clear later on that the orientation
simply induces a convention) or it can follow from the exploration of the kinematic
tree according to theegular numbering schen{8], which induces a parent-child
relationship such that each node has a unique input edge and multiple output edges.
We further follow the classical Denavit-Hartenberg notation, we assume that each
joint has an associated reference frame with the z-axis aligned with the rotation axis;
this frame will be denotetlg;ji. In kinematics, an edge;; fromv; to v; represents
the fact thatheji is ®xed in tha'" link. In dynamics,g;j represents the fact that
the dynamic equations will compute (and make usepf), i.e. the wrench that the
it link exerts on thg'" link, and not the equal and opposite reactiow, j, i.e. the
wrench that thg!" link exerts on thé'" link. In order to simplify the computations
of the inverse dynamics on the graph, kinematic and dynamic measurements have
been explicitly represented. Speci®cally, the graph representation has been enhanced
with a new set of graphical symbols: a triangle to represent kinematic quantities
(i.e. velocities and acceleration of links\; W, | i, and a rhombus for wrenches
(i.e. force sensors measurements on a lifk m). Moreover these symbols have
been further divided into known quantities to represent sensors measurements, and
unknown to indicate the quantities to be computed, as in the following:

N: unknown kinematic information
H: known (e.g., measured) kinematic information
} :unknown dynamic information

Force control and reaching movements on the iCub humanoid robot 7

: known (e.g., measured) dynamic information

In general, kinematic variables can be measured by means of gyroscopes, ac-
celerometers, or simply inertial sensors. When attached on'llnkhese sensors
provide angular and linear velocities and accelerations; £and g at the spe-
ci®c location where the sensor is located. We can represent these measurement in
the graph with alack triangle(H) and an additional edge from the proper link
where the sensor is attached to the triangle. As usual, the edge has an associated
reference frame, in this case corresponding to the reference frame of the sensor. An
unknown kinematic variable is represented bylite triangle(N) with an associ-
ated edge going from the link (where the unknown kinematic variable is attached)
to the triangle. Similarly, we introduce two new types of nodes with a rhomboidal
shapeblack rhombug) to represent known (i.e. measured) wrencldste rhom-
bus(}) to represent unknown wrenches which need to be computed. The reference
frame associated to the edge will be the location of the applied or unknown wrench.
The complete graph for the iCub is shown in ®gure 4.

From the graph structure, we can de®ne the update rule that brings information
across edges and by traversing the graph we therefore compute either dynamical or
kinematic unknowns}(andN respectively). For kinematic quantities this is:

Wi+1= Wi+ Q17
Gi1= WG+ &z + Grawi z (8)
Bre1= B+ VG et Wier (Wier Fiie1) s
wherez is thez-axis ofhi, i.e. we propagate information from the base to the end-
effector visiting all nodes and moving from one node to the next following the edges.
The internal dynamics of the manipulator can be studied as well: if the dynamical
parameters of the system are known (mamssinertial;, center of mas€§;), then
we can propagate knowledge of wrenches applied to e.g. the end-effggtpatdd
M 1) to the base frame of the manipulator so as to retrieve forces and mofnents
m:

m=ms1 fi 1 ug+ fier o+ VG W (hw)
where:

be = B+ VG i tw (W fic) (10)
noting that these are the classical recursive Newton-Euler equations. Knowledge of

wrenches enables the computatiompfis needed in equation 2 or the correspond-
ing joint torques fromt; = mTzi 1.

8 Giorgio Metta and Lorenzo Natale and Francesco Nori and Giulio Sandini

Fig. 4 Representation of iCub's kinematic and dynamic graph. In (a): iCub's kinematics. The
inertial sensor measurel) is the unique source of kinematic information for the whole branched
system. (b): iCub's dynamics when the robot is standing on the mainstay and moving freely in
space. Given the four FTSs, the main graph is cut by the four links hosting the sensors, and a
total of ®ve sub-graphs are ®nally generated. The unknowns are the external wrenches at the end-
effectors: if the robot does not collide with the environment, they are zero, whereas if a collision
happens, then an external wrench arises. The displacement between the expected and the estimated
wrenches allows detecting contacts with the environment under the hypothesis that interactions
can only occur at the end-effectors. The external wrench on top of the head is assumed to be
null. Notice that the mainstay is represented by a unknown wrgnch): iCub's dynamics when

the robot is crawling (four points of contact with the ground). As in the previous case, ®ve sub-
graphs are generated after the insertion of the four FTSs measurements, but unlike the free-standing
case, here the mainstay wrench is removed, being the iCub on the “oor. Speci®c locations for the
contacts with the environment are given as part of the task: the unknown external wrénghes (

are placed at wrists and knees, while wrenches at the feet and palms are assumed known and null
(H). Interestingly, while moving on the “oor the contact with the upper part could be varying (e.g.
wrists, palms, elbows), so the unknown wrenches could be placed in different locations than the
ones shown in the graph.

3.1 Validation and further improvements

In order to validate computation of dynamics, we compared measurements from the
FTSs with their model-based prediction. The wrenclve$rom the four six-axes
FTSs embedded in the limbs are compared with the analogous quawtitigs- A
dicted by the dynamical model, during unconstrained movements (i.e. null external
wrenches). Kinematic and dynamic parameters are retrieved from the CAD model
of the robot. Sensor measuremewtscan be predicted assuming known wrenches

at the limbs extremities (hands or feet) and then propagating forces up to the sen-
sors. In this case, null wrenches are assumed, because of the absence of contact with
the environment. Table 1 summarizes the statistics of the efnars wi) for each

limb during a given, periodic sequence of movements, with the robot supported by
a rigid metallic mainstay, and with the limbs moving freely without self collision

or contact with the environment. Table 1 shows the mean and the standard devia-

Force control and reaching movements on the iCub humanoid robot 9

f['; l:\v[o {;’\Yﬂl]
20 2
15 4 1 ” ey Y |
10 m\f! ? |
\ ‘ ‘ ‘ . ‘ ‘ ‘
% 10 20 30 0 10 20 30
fi [N] p1 [Nm)]
10 2
of A A 15 M’V/
a A"aY
_10\,./ \‘/,—\\,/ 1 g |
2% 10 20 0 %% 10 20 30
fo [N] fo [N'm]
10
UTAVA I/ (WA //\‘
-10 \\,/
=2

0 10 20 30
time [s]

Fig. 5 Comparison between the wrench measured by the FT sensor and that predicted by the
model, during a generic contact-free movement of the left arm. The three plots on the left are
forces expressed {iN]; the three rightmost plots are the momentfNmj.

tion of the errors between measured and predicted sensor wrench during movement.
Figure 5 shows a comparison betwagnandwa for the left arm (without loss of
generality).

Subsequently we investigated methods to improve the estimates of the robot dy-
namics. In another set of experiments we thus compared various non-parametric
learning methods with the rigid body model just presented. We refer the interested
reader to Gijsberts et al. [10]. We report here only the main ®ndings. The task of
learning here is the estimation of the wrenches due to the internal dynamjcs (
given the FTS readingsv) and the robot con®guration, (@ &; we do not take
into account inertial information.

We compared various methods from the literature as for example the widely used
Local Weighted Projection Regression (LWPR), the Local Gaussian Process (LGP)
and Gaussian Process Regression (GPR) as presented by Nguyen-Tuong et al. [11]
with an incremental version of Kernel Ridge Regression (also known as Sparse
Spectrum Gaussian Process) with the aim of maintaining eventually an incremen-
tal open-ended learner updating the estimation of the robot dynamics on-line. Our
incremental method relies on an approximation of the kernel (see [12]) based on a
random sampling of its Fourier spectrum. The more random features, the better the
approximation. We considered approximations with 500, 1000, and 2000 features.
In the following we call KRR the plain kernel ridge regression method and BFRR

10 Giorgio Metta and Lorenzo Natale and Francesco Nori and Giulio Sandini

Table 1 Error in predicting FT sensor measurement (see text for details).

| efo ef1 €2 | (S™) €mi €
& -0.3157 -0.5209 0.7723| -0.0252 0.0582 0.0197
Se 0.5845 0.7156 0.7550 | 0.0882 0.0688 0.0364

rightarm:e VAra Wsra

a -0.0908 -0.4811 0.8699 0.0436 0.0382 0.0030

Se 0.5742 0.6677 0.7920 0.1048 0.0702 0.0332
leftarm:e vhia Wsia

& -1.6678 3.4476 -1.5505| 0.4050 -0.7340 0.0171

Se 3.3146 2.7039 1.7996 0.3423 0.7141 0.0771

rightleg:e VARL WsRL

éa 0.2941 -5.1476 -1.9459| -0.3084 -0.8399 0.0270
Se 1.8031 1.8327 2.3490 | 0.3365 0.8348 0.0498

leftlegie Wil WsLL
Slunits: f : [N], m: [Nm]

the random feature version f@ features. Various datasets (e.g. Barret, Sarcos)
were used from the literature (for comparison [11]) before applying the method to
the iCub.

The results in ®gure 6 show that KRR often outperforms GPR by a signi®cant
margin, even though both methods have identical formulations for the predictive
mean and KRR hyperparameters were optimized using GPR. These deviations in-
dicate that different hyperparameter con®gurations were used in both experiments.
This is a common problem with GPR in comparative studies: the marginal likeli-
hood is non-convex and its optimization often results in a local optimum that de-
pends on the initial con®guration. Hence, we have to be cautious when interpreting
the comparative results on these datasets with respect to generalization performance.
The comparison between KRR and RFRR, trained using identical hyperparameters,
remains valid and gives an indication of the approximation quality of RFRR. As
expected, the performance of RFRR steadily improves as the number of random
features increases. Furthermore, REBRis often suf®cient to obtain satisfactory
predictions on all datasets. RFRI on the other hand, performs poorly on the Bar-
rett dataset, despite using distinct hyperparameter con®gurations for each degree of
freedom. In this case, RFR®°with a shared hyperparameter con®guration is more
accurate and requires overall less time for prediction.

Figure 7 shows how the average nMSE develops as test samples are predicted
in sequential order using either KRR or RFRR. RFRR requires between 5000 and
10000 samples to achieve performance comparable to KRR. The performance of
KRR, on the other hand, decreases over time. In particular on the iCub dataset it
suffers a number of large errors, causing the average nMSE to show sudden jumps.
This is a direct consequence of the unavoidable fact that training and test samples are

Force control and reaching movements on the iCub humanoid robot 11

D LWPR LGP [GPR KRR
RERR® [I] RFRR '™ [7] RERR2000
0.04

0.03

0.02 |

0.01 |-

0.00 | 0 b I = || ‘
1 2 3 1 5 6 7

Degree of Freedom

nMSE

(a) Simulated Sarcos

0.06

0.04 -

nMSE

0.02

oios L [DJ’\‘- mj.- L H H]J(H:I_Dr
1 2 3 1 5 6 7

Degree of Freedom

(b) Sarcos

0.30

0.20

’]M;J%JL I T 1

Degree of Freedom

nMSE

(c) Barrett

Fig. 6 Prediction error per degree of freedom for the (a) Simulated Sarcos, (b) Sarcos, and (c)
Barrett datasets. The results for LWPR, GPR, and LGP are taken from Nguyen-Tuong et al. [11].
The mean error over 25 runs is reported for RFRR ViitA 500,100Q 2000, whereas error bars
mark a distance of one standard deviation. Note that in some cases the prediction errors for KRR
are very close to zero and therefore barely noticeable.

not guaranteed to be drawn from the same distribution. Incremental RFRR, on the
other hand, is largely unaffected by these changes and demonstrates stable predictive
performance. This is not surprising, as RFRR is incremental and thus (1) it is able
to adapt to changing conditions, and (2) it eventually has trained on signi®cantly
more samples than KRR. Furthermore, ®gure 7 shows that 200 random features are
suf®cient to achieve satisfactory performance on either dataset. In this case, model
updates of RFRR require only 408, as compared tordsand fmswhen using

500 or 1000 random features, respectively. These timing ®gures make incremental
RFRR suitable for high frequency loops as needed in robot control tasks.

In conclusion, this shows that for a relatively complex robot like the iCub, good
estimation of the internal dynamics is possible and that a combination of non-
parametric and parametric methods can provide simultaneously good generaliza-
tion performance, fast and incremental learning. Not surprisingly, lower errors are

12 Giorgio Metta and Lorenzo Natale and Francesco Nori and Giulio Sandini

0.06

e
o
=

Average nMSE

e
o
)

0.00 I | I | I | I | I | I | I |
0 10000 20000 30000 40000 50000 60000 70000

Samples

Fig. 7 Average prediction error with respect to the number of test samples of KRR and incremental

RFRR withD 2 200,500, 1000 on the iCub dataset. The error is measured as the nMSE averaged

over the force and torque output components. The standard deviation over 25 runs of RFRR is
negligible in all cases, for clarity we report only the mean without error bars.

obtained with learning. In the next section we see how to build on this controller to
reach for visually identi®ed targets.

4 Kinematics

We consider the general problem of computing the value of joint amglésorder

to reach a given position in spasg 2 R3 and orientatiorag 2 R* of the end-
effector (whereay is a representation of rotation in axis/angle notation). Note that

(g can be directly connected to the input of the impedance controller described in
section 3. It is desired that the computed solution satis®es a set of additional con-
straints expressed as generic inequalities + we see later the reason for constraining
the solution. This can be stated as follows:

Ga = argmingra(kag Ka (@K + b(rest @) "W(Grest 0)) ;
kxg Ky(k’< e | (11)
qL < g< qu ’

whereKy andK, are the forward kinematic functions for the position and orientation
of the end-effector for a given con®guratignges; is a preferred joint con®gura-
tion, W is a diagonal weighting matriy a positive scalar weighting the in uence
of the terms in the optimization arela parameter for tuning the precision of the
movement. Typicallyp < 1 ande 2 [10 2:10 4]. The solution to equation 11 has
to satisfy the set of additional constraints of joint lingis< q< qu with q., qu the

Force control and reaching movements on the iCub humanoid robot 13

lower and upper bounds respectively. In the case of the iCub, we solved this problem
for ten DoF * seven of the arm and three of the waist and we determined the value
of grest SO that the waist is as upright as possible. The left and right arm can be both
controlled by switching from one or the other kinematic chain (e.g. as a function of
the distance to the target).

We used an interior point optimization technique to solve the problem in 11.
In particular we used IpOpt [13], a public domain software package designed for
large-scale nonlinear optimization. This approach has the following advantages:

1. Quick convergence. IpOpt is reliable and fast enough to be employed in control
loops at reasonable rates (tens of milliseconds), as e.g. compared to more tradi-
tional iterative methods such as the Cyclic Coordinate Descent (CCD) adopted
in [14];

2. Scalability. The intrinsic capability of the optimizer to treat nonlinear problems
in any arbitrary number of variables is exploited to make the controller structure
easily scalable with the size of the joint space. For example, it is possible to
change at run time from the control of the 7-DoF iCub arm to the complete 10-
DoF structure inclusive of the waist or to any combination of the joints depending
on the task;

3. Automatic handling of singularities and joint limits. This technique automatically
deals with singularities in the arm Jacobian and joint limits, and can ®nd solutions
in virtually any working conditions;

4. Tasks hierarchy. The task is split in two subtasks: the control of the orientation
and the control of the position of the end-effector. Different priorities can be
assigned to the subtasks. In our case the control of position has higher priority
with respect to orientation (the former is handled as a nonlinear constraint and
thus is evaluated before the cost);

5. Description of complex constraints. It is easy to add new constraints as linear
and/or nonlinear inequalities either in task or joint space. In the case of the iCub,
for instance, we added a set of constraints that avoid reaching the limits of the
tendons that actuate the three joints of the shoulder.

Onceqyq is determined as described above, there is still the problem of generating
a trajectory from the current robot con®guratipto qq. Simultaneously, we would
like to impose suitable smoothness constraints to the trajectory. This has been ob-
tained by using the Multi-Referential Dynamical Systems approach [14], whereby
two dynamical controllers, one in joint space and another in task space, evolve con-
currently (®gure 8). The coherence constraint, thatisl with J the Jacobian of
the kinematics map, guarantees that at each instant of time the trajectory is meaning-
ful. This is enforced by using the Lagrangian multipliers method and can be tuned to
modulate the relative in"uence of each controller (i.e. to avoid joint angles limits).
The advantage of such a redundant representation includes the management of the
singularities while maintaining a quasi-straight trajectory pro®Ile of the end-effector
in the task space + reproducing a human-like behavior [15].

Differently from the work of Hersch and Billard, we designed a feedback trajec-
tory generator instead of the VITE (Vector- Integration-To-Endpoint) method used

14 Giorgio Metta and Lorenzo Natale and Francesco Nori and Giulio Sandini

Fig. 8 The multi-referential scheme for trajectory generatikns the forward kinematics map;
gsp is the vector of encoder signals.

in open loop. A complete discussion of the rationale of the modi®cations to the tra-
jectory generation is outside the scope of this paper; the interested reader is referred
to Pattacini et al. [16]. Reasons to prefer a feedback formulation include the possi-
bility of smoothly connecting multiple pieces of trajectories and correcting on line
for accumulation of errors due to the enforcement of the constraints of the multi-
referential method.

4.1 Validation and further improvements

As earlier for the dynamics, we compared our method with other methods from the
literature. The comparison with the method of Hersch et al. [14] was almost imme-
diate since the work was developed on the iCub. This provides the multi-referential
approach together with the VITE trajectory generation at no cost. Additionally, we
included in the assessment another controller representing a more conventional strat-
egy that uses the Damped Least-Squares (DLS) rule [17] coupled with a secondary
task that comprises the joints angles limits by means of the gradient projection
method [18]. This solution employs the third-party package Orocos [19], a tool for
robot control that implements the DLS approach and whose public availability and
compliance with real-time constraints justi®ed its adoption as one of the reference
controllers.

In the ®rst experiment we put to test the three selected schemes in a point-to-point
motion task wherein the iCub arm was actuated in the 27-DoF mode® and where
the end-effector was controlled both in position and orientation. Results show that

